/YOLOv2

YOLOv2 implementation using PyTorch

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

Object Detection: YOLOv2


[Content]

  1. Description
  2. Usage
    2-1. K-medoids Anchor Clustering
    2-2. Model Training
    2-3. Detection Evaluation
    2-4. Result Analysis
  3. Contact

[Description]

This is a repository for PyTorch implementation of YOLOv2 following the original paper (https://arxiv.org/abs/1612.08242).

  • Performance Table
Model Dataset Train Valid Size
(pixel)
mAP
(@0.5:0.95)
mAP
(@0.5)
Params
(M)
FLOPs
(B)
YOLOv2
(Paper:page_with_curl:)
PASCAL-VOC trainval2007+2012 test2007 416 not reported 76.8 not reported 34.90
YOLOv2
(Our:star:)
PASCAL-VOC trainval2007+2012 test2007 416 35.6 73.2 50.66 29.49
YOLOv2
(Our:star:)
COCO train2017 val2017 416 20.0 45.6 50.96 29.49

result

[Usage]

K-medoids Anchor Clustering

  • You extract anchor box priors from all instances' boxes at first.
python kmedoids_anchor.py --exp my_test --data voc.yaml
2022-11-16 13:43:54 | Avg IOU: 62.01%
2022-11-16 13:43:54 | Boxes:
    [[0.068      0.11711711]
    [0.16       0.26666668]
    [0.278      0.60982656]
    [0.776      0.82133335]
    [0.494      0.40533334]]
2022-11-16 13:43:54 | Ratios: [0.46, 0.58, 0.6, 0.94, 1.22]

Model Training

  • You can train your own YOLOv2 model using Darknet19 with anchor box from above step. If you wanna train YOLOv2 on your dataset from the scratch, add "--scratch" in training command like below.
python train.py --exp my_test --data voc.yaml --multiscale(optional) --scratch(optional)

Detection Evaluation

python val.py --exp my_test --data voc.yaml --ckpt-name best.pt

Result Analysis

  • After training is done, you will get the results shown below.

2022-11-24 00:05:50 | YOLOv2 Architecture Info - Params(M): 50.67, FLOPS(B): 29.49
2022-11-24 00:11:46 | [Train-Epoch:001] multipart: 47.5865  obj: 0.3412  noobj: 39.8344  txty: 0.3336  twth: 1.3665  cls: 4.3459  
2022-11-24 00:16:35 | [Train-Epoch:002] multipart: 5.2848  obj: 0.4527  noobj: 0.4779  txty: 0.2533  twth: 0.5172  cls: 1.7730  
2022-11-24 00:21:20 | [Train-Epoch:003] multipart: 4.7149  obj: 0.4151  noobj: 0.6242  txty: 0.2230  twth: 0.3704  cls: 1.4219  
2022-11-24 00:25:57 | [Train-Epoch:004] multipart: 4.4068  obj: 0.3878  noobj: 0.6716  txty: 0.2124  twth: 0.3370  cls: 1.2465  
2022-11-24 00:30:33 | [Train-Epoch:005] multipart: 4.2239  obj: 0.3716  noobj: 0.6863  txty: 0.2042  twth: 0.3206  cls: 1.1549  
2022-11-24 00:35:08 | [Train-Epoch:006] multipart: 4.0749  obj: 0.3551  noobj: 0.6898  txty: 0.1996  twth: 0.3054  cls: 1.1047  
2022-11-24 00:39:49 | [Train-Epoch:007] multipart: 3.9681  obj: 0.3493  noobj: 0.6986  txty: 0.1950  twth: 0.2917  cls: 1.0364  
2022-11-24 00:44:25 | [Train-Epoch:008] multipart: 3.9203  obj: 0.3470  noobj: 0.7098  txty: 0.1907  twth: 0.2743  cls: 1.0106  
2022-11-24 00:49:01 | [Train-Epoch:009] multipart: 3.7825  obj: 0.3335  noobj: 0.7053  txty: 0.1868  twth: 0.2739  cls: 0.9491  
2022-11-24 00:53:37 | [Train-Epoch:010] multipart: 3.7485  obj: 0.3315  noobj: 0.7096  txty: 0.1834  twth: 0.2738  cls: 0.9241  
2022-11-24 00:54:57 | 
	 - Average Precision (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.298
	 - Average Precision (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.589
	 - Average Precision (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.250
	 - Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.009
	 - Average Precision (AP) @[ IoU=0.50      | area= small | maxDets=100 ] = 0.042
	 - Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.114
	 - Average Precision (AP) @[ IoU=0.50      | area=medium | maxDets=100 ] = 0.279
	 - Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.361
	 - Average Precision (AP) @[ IoU=0.50      | area= large | maxDets=100 ] = 0.681

                                                ...

2022-11-24 16:37:12 | [Train-Epoch:199] multipart: 1.8789  obj: 0.1728  noobj: 0.5847  txty: 0.1090  twth: 0.1221  cls: 0.1992  
2022-11-24 16:37:13 | [Best mAP at 190]

	 - Average Precision (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.481
	 - Average Precision (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.753
	 - Average Precision (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.501
	 - Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.061
	 - Average Precision (AP) @[ IoU=0.50      | area= small | maxDets=100 ] = 0.174
	 - Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.230
	 - Average Precision (AP) @[ IoU=0.50      | area=medium | maxDets=100 ] = 0.460
	 - Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.552
	 - Average Precision (AP) @[ IoU=0.50      | area= large | maxDets=100 ] = 0.807


[Contact]