Fast Elasticsearch Vector Scoring
This Plugin allows you to score Elasticsearch documents based on embedding-vectors, using dot-product or cosine-similarity.
General
- This plugin was inspired from This elasticsearch vector scoring plugin and this discussion to achieve 10 times faster processing over the original. give it a try.
- I gained this substantial speed improvement by using the lucene index directly
- I developed it for my workplace which needs to pick KNN from a set of ~4M vectors. our current ES setup is able to answer this in ~80ms
Elasticsearch version
- Currently designed for Elasticsearch 5.6.0.
- for Elasticsearch 5.2.2 use branch
es-5.2.2
- for Elasticsearch 2.4.4 use branch
es-2.4.4
Maven configuration
- Clone the project
mvn package
to compile the plugin as a zip file- In Elasticsearch run
elasticsearch-plugin install file:/PATH_TO_ZIP
to install plugin
Usage
Documents
- Each document you score should have a field containing the base64 representation of your vector. for example:
{
"id": 1,
....
"embedding_vector": "v7l48eAAAAA/s4VHwAAAAD+R7I5AAAAAv8MBMAAAAAA/yEI3AAAAAL/IWkeAAAAAv7s480AAAAC/v6DUgAAAAL+wJi0gAAAAP76VqUAAAAC/sL1ZYAAAAL/dyq/gAAAAP62FVcAAAAC/tQRvYAAAAL+j6ycAAAAAP6v1KcAAAAC/bN5hQAAAAL+u9ItAAAAAP4ckTsAAAAC/pmkjYAAAAD+cYpwAAAAAP5renEAAAAC/qY0HQAAAAD+wyYGgAAAAP5WrCcAAAAA/qzjTQAAAAD++LBzAAAAAP49wNKAAAAC/vu/aIAAAAD+hqXfAAAAAP4FfNCAAAAA/pjC64AAAAL+qwT2gAAAAv6S3OGAAAAC/gfMtgAAAAD/If5ZAAAAAP5mcXOAAAAC/xYAU4AAAAL+2nlfAAAAAP7sCXOAAAAA/petBIAAAAD9soYnAAAAAv5R7X+AAAAC/pgM/IAAAAL+ojI/gAAAAP2gPz2AAAAA/3FonoAAAAL/IHg1AAAAAv6p1SmAAAAA/tvKlQAAAAD/I2OMAAAAAP3FBiCAAAAA/wEd8IAAAAL94wI9AAAAAP2Y1IIAAAAA/rnS4wAAAAL9vriVgAAAAv1QxoCAAAAC/1/qu4AAAAL+inZFAAAAAv7aGA+AAAAA/lqYVYAAAAD+kNP0AAAAAP730BiAAAAA="
}
- Use this field mapping:
"embedding_vector": {
"type": "binary",
"doc_values": true
- The vector can be of any dimension
Converting a vector to Base64
to convert an array of float32 to a base64 string we use these example methods:
Java
public static float[] convertBase64ToArray(String base64Str) {
final byte[] decode = Base64.getDecoder().decode(base64Str.getBytes());
final FloatBuffer floatBuffer = ByteBuffer.wrap(decode).asFloatBuffer();
final float[] dims = new float[floatBuffer.capacity()];
floatBuffer.get(dims);
return dims;
}
public static String convertArrayToBase64(float[] array) {
final int capacity = Float.BYTES * array.length;
final ByteBuffer bb = ByteBuffer.allocate(capacity);
for (float v : array) {
bb.putFloat(v);
}
bb.rewind();
final ByteBuffer encodedBB = Base64.getEncoder().encode(bb);
return new String(encodedBB.array());
}
Python
import base64
import numpy as np
dfloat32 = np.dtype('>f4')
def decode_float_list(base64_string):
bytes = base64.b64decode(base64_string)
return np.frombuffer(bytes, dtype=dfloat32).tolist()
def encode_array(arr):
base64_str = base64.b64encode(np.array(arr).astype(dfloat32)).decode("utf-8")
return base64_str
Ruby
require 'base64'
def decode_float_list(base64_string)
Base64.strict_decode64(base64_string).unpack('g*')
end
def encode_array(arr)
Base64.strict_encode64(arr.pack('g*'))
end
Go
import(
"math"
"encoding/binary"
"encoding/base64"
)
func convertArrayToBase64(array []float32) string {
bytes := make([]byte, 0, 4*len(array))
for _, a := range array {
bits := math.Float32bits(a)
b := make([]byte, 4)
binary.BigEndian.PutUint32(b, bits)
bytes = append(bytes, b...)
}
encoded := base64.StdEncoding.EncodeToString(bytes)
return encoded
}
func convertBase64ToArray(base64Str string) ([]float32, error) {
decoded, err := base64.StdEncoding.DecodeString(base64Str)
if err != nil {
return nil, err
}
length := len(decoded)
array := make([]float32, 0, length/4)
for i := 0; i < len(decoded); i += 4 {
bits := binary.BigEndian.Uint32(decoded[i : i+4])
f := math.Float32frombits(bits)
array = append(array, f)
}
return array, nil
}
Querying
-
For querying the 100 KNN documents use this POST message on your ES index:
For ES 5.X:
{
"query": {
"function_score": {
"boost_mode": "replace",
"script_score": {
"script": {
"inline": "binary_vector_score",
"lang": "knn",
"params": {
"cosine": false,
"field": "embedding_vector",
"vector": [
-0.09217305481433868, 0.010635560378432274, -0.02878434956073761, 0.06988169997930527, 0.1273992955684662, -0.023723633959889412, 0.05490724742412567, -0.12124507874250412, -0.023694118484854698, 0.014595639891922474, 0.1471538096666336, 0.044936809688806534, -0.02795785665512085, -0.05665992572903633, -0.2441125512123108, 0.2755320072174072, 0.11451690644025803, 0.20242854952812195, -0.1387604922056198, 0.05219579488039017, 0.1145530641078949, 0.09967200458049774, 0.2161576747894287, 0.06157230958342552, 0.10350126028060913, 0.20387393236160278, 0.1367097795009613, 0.02070528082549572, 0.19238869845867157, 0.059613026678562164, 0.014012521132826805, 0.16701748967170715, 0.04985826835036278, -0.10990987718105316, -0.12032567709684372, -0.1450948715209961, 0.13585780560970306, 0.037511035799980164, 0.04251480475068092, 0.10693439096212387, -0.08861573040485382, -0.07457160204648972, 0.0549330934882164, 0.19136285781860352, 0.03346432000398636, -0.03652812913060188, -0.1902569830417633, 0.03250952064990997, -0.3061246871948242, 0.05219300463795662, -0.07879918068647385, 0.1403723508119583, -0.08893408626317978, -0.24330253899097443, -0.07105310261249542, -0.18161986768245697, 0.15501035749912262, -0.216160386800766, -0.06377710402011871, -0.07671763002872467, 0.05360138416290283, -0.052845533937215805, -0.02905619889497757, 0.08279753476381302
]
}
}
}
}
},
"size": 100
}
For ES 2.X:
{
"query": {
"function_score": {
"boost_mode": "replace",
"script_score": {
"lang": "knn",
"params": {
"cosine": false,
"field": "embedding_vector",
"vector": [
-0.09217305481433868, 0.010635560378432274, -0.02878434956073761, 0.06988169997930527, 0.1273992955684662, -0.023723633959889412, 0.05490724742412567, -0.12124507874250412, -0.023694118484854698, 0.014595639891922474, 0.1471538096666336, 0.044936809688806534, -0.02795785665512085, -0.05665992572903633, -0.2441125512123108, 0.2755320072174072, 0.11451690644025803, 0.20242854952812195, -0.1387604922056198, 0.05219579488039017, 0.1145530641078949, 0.09967200458049774, 0.2161576747894287, 0.06157230958342552, 0.10350126028060913, 0.20387393236160278, 0.1367097795009613, 0.02070528082549572, 0.19238869845867157, 0.059613026678562164, 0.014012521132826805, 0.16701748967170715, 0.04985826835036278, -0.10990987718105316, -0.12032567709684372, -0.1450948715209961, 0.13585780560970306, 0.037511035799980164, 0.04251480475068092, 0.10693439096212387, -0.08861573040485382, -0.07457160204648972, 0.0549330934882164, 0.19136285781860352, 0.03346432000398636, -0.03652812913060188, -0.1902569830417633, 0.03250952064990997, -0.3061246871948242, 0.05219300463795662, -0.07879918068647385, 0.1403723508119583, -0.08893408626317978, -0.24330253899097443, -0.07105310261249542, -0.18161986768245697, 0.15501035749912262, -0.216160386800766, -0.06377710402011871, -0.07671763002872467, 0.05360138416290283, -0.052845533937215805, -0.02905619889497757, 0.08279753476381302
]
},
"script": "binary_vector_score"
}
}
},
"size": 100
}
-
The example above shows a vector of 64 dimensions
-
Parameters:
field
: The field containing the base64 vector.cosine
: Boolean. if true - use cosine-similarity, else use dot-product.vector
: The vector (comma separated) to compare to.
-
Question: I've encountered the error
java.lang.IllegalStateException: binaryEmbeddingReader can't be null
while running the query. what should I do?Answer: this error happens when the plugin fails to access the field you specified in the
field
parameter in at least one of the documents.To solve it:
- make sure that all the documents in your index contains the filed you specified in the
field
parameter. see more details here - make sure that the filed you specified in the
field
parameter has abinary
type in the index mapping
- make sure that all the documents in your index contains the filed you specified in the