- numpy
- matplotlib
(Use !pip
for notebook installations, Jupyter, Colab, etc.)
pip install git+https://github.com/pmdscully/plot_split_bar.git
Open an Example notebook in Google-Colab
from splitbar import plot_split_bar
import pandas as pd
import numpy as np
df = pd.read_csv('https://github.com/owid/co2-data/raw/master/owid-co2-data.csv')
columns1 = ['year','oil_co2','coal_co2','gas_co2','other_industry_co2','cement_co2','flaring_co2','trade_co2',]
data = df[(df['country']=='World') & (df['year']>=2005)][columns1].set_index('year').iloc[::-1]
plot_split_bar(data=data.to_numpy(),
rows=data.index,
columns=[c.replace('_',' ').title().replace('Co2','\nCO2') for c in data.columns],
precision=1,
fn_suffix='world_co2',
lower_caption='Data on CO2 and Greenhouse Gas Emissions by Our World in Data. World data 2005 to 2022.',
fig_size=(7, 3),
WRITE=True
)
from splitbar import plot_split_bar
import pandas as pd
import numpy as np
rows = 20
cols = 7
data = pd.DataFrame( np.random.rand(rows,cols),
columns=[chr(65+i) for i in range(cols)],
index=[2005+(i) for i in range(rows)]).iloc[::-1]
plot_split_bar(data=data.to_numpy(),
rows=data.index,
columns=data.columns,
precision=2,
fn_suffix='',
lower_caption='This plot contains randomly generated data.',
fig_size=(7, 5),
WRITE=False
)