YOLO project
Model darknet yolov3 416
directories:
-
Code:
project/vehicle_and_person_detection/code for image : file: yolo_image.py command: python yolo_image.py for save the detected image: python yolo_image.py --save True Dependent folder: code/input:- handlabel(40 images) , coco(validation2017) specific to vehicle and person Takes images from handlabel_images or coco_validation_images save detected bounding box text files handlabel_detected-results or coco_detected-results save detected images detected-images for video : file: yolo_video.py command: python yolo_output.py --input <file-name> --output for save the text (detected bounding) file separately python yolo_output.py --input <file-name> --output --save_file_separately for save the text (detected bounding) file python yolo_output.py --input <file-name> --output --save_file video save in out_video folder input video path : video (todo) presently code for mAP : file: calculate_map.py command: python calculate_map.py folder requirement: coco_ground-truth, coco_detected-results , coco_validation_images(optional) result: results/<filename>
train :
file : train.py
command: pthon train.py
Note: change weights, anchor and classes path in train.py as per the need