A razor-thin layer over csvmatch that allows you to do fuzzy matching with pandas dataframes.
pip install fuzzy_pandas
To borrow 100% from the original repo, say you have one CSV file such as:
name,location,codename
George Smiley,London,Beggerman
Percy Alleline,London,Tinker
Roy Bland,London,Soldier
Toby Esterhase,Vienna,Poorman
Peter Guillam,Brixton,none
And another such as:
Person Name,Location
Maria Andreyevna Ostrakova,Russia
Otto Leipzig,Estonia
George SMILEY,London
Peter Guillam,Brixton
Konny Saks,Oxford
You can then use fdp.fuzzy_merge
to see which names are in both files:
import pandas as pd
import fuzzy_pandas as fpd
df1 = pd.read_csv("data1.csv")
df2 = pd.read_csv("data2.csv")
fpd.fuzzy_merge(df1, df2,
left_on=['name'],
right_on=['Person Name'],
ignore_case=True,
keep='match')
. | name | Person Name |
---|---|---|
0 | George Smiley | George SMILEY |
1 | Peter Guillam | Peter Guillam |
That's a terrible, non-fuzzy example, though. Maybe you should hop to the next section if you want something more meaningful?
You can find examples, including different types of matches (edit distance, phonetic, etc), in this notebook from the examples folder.
All of these options can be sent as arguments to fpd.fuzzy_merge
.
- left : DataFrame
- right : DataFrame
- Object to merge
left
with - on :
str
orlist
- Column names to compare. These must be found in both DataFrames. - left_on :
str
orlist
- Column names to compare in the left DataFrame. - right_on :
str
orlist
- Column names to compare in the right DataFrame. - keep : str { 'all', 'match' }
- Overrides
keep_left
andkeep_right
- keep_left :
str
orlist
, default 'all' - List of columns to preserve from the left DataFrame. - If 'all', preserve all columns. - If 'match', preserve left_on matching) column. - If any other string, just keeps that one column. - keep_right :
str
orlist
, default 'all' - List of columns to preserve from the right DataFrame. - If 'all', preserve all columns. Defaults to right_on. - If 'match', preserve right_on (matching) column. - If any other string, just keeps that one column. - method :
str
orlist
, default 'exact' - Perform a fuzzy match, and an optional specified algorithm. - Multiple algorithms can be specified which will apply to each field respectively. - Options: * exact: exact matches * levenshtein: string distance metric * jaro: string distance metric * metaphone: phoenetic matching algorithm * bilenko: prompts for matches - threshold : float or list, default
0.6
- The threshold for a fuzzy match as a number between 0 and 1 - Multiple numbers will be applied to each field respectively - ignore_case : bool, default
False
- Ignore case (default is case-sensitive) - ignore_nonalpha : bool, default
False
- Ignore non-alphanumeric characters - ignore_nonlatin : bool, default
False
- Ignore characters from non-latin alphabets - Accented characters are compared to their unaccented equivalent - ignore_order_words : bool, default
False
- Ignore the order words are given in - ignore_order_letters : bool, default
False
- Ignore the order the letters are given in, regardless of word order - ignore_titles : bool, default
False
- Ignore a predefined list of name titles (such as Mr, Ms, etc) - join : { 'inner', 'left-outer', 'right-outer', 'full-outer' }
For more how-to information, check out the examples folder or the the original repo.