Copyright (C) 2018-2020 Centre National d'Etudes Spatiales
This software is released under open source license LGPL v.3 and is distributed WITHOUT ANY WARRANTY, read LICENSE.txt for further details.
SWOT (Surface Water and Ocean Topography) is an innovative radar altimetry satellite mission projected for launch in 2021, prepared jointly by NASA’s Jet Propulsion Laboratory (JPL) and Centre National d’Etudes Spatiales (CNES), with contributions from the UK Space Agency (UKSA) and the Canadian Space Agency (CSA). SWOT features a high-rate (HR) data mode for continental hydrology, and a low-rate (LR) data mode dedicated mainly to oceanography. For more information, refer to https://swot.cnes.fr/en/ or https://swot.jpl.nasa.gov/.
- Provide open-source tools that, together with JPL’s RiverObs tool (https://github.com/SWOTAlgorithms/RiverObs.git), enable end-users to generate virtually all SWOT HR level-2 (L2) products with fairly (but not fully) representative characteristics (see section on caveats below)
- Get familiar with product content and formats, use the data to conduct studies...
- Give end-users access to the L2+ HR processing prototypes
- Validate methodology, propose improvements...
- As far as possible let the toolbox correspond directly to the processing prototypes that are evolving towards operational processing chains
- Coded in high-level programming language (Python 3), for simple distribution, installation and use
Note that both algorithms and products are still under development and will be updated regularly.
- SISIMP: Large scale simulator of L2_HR_PIXC products (with orbit selection tool)
- LOCNES: Generation of L2_HR_LakeTile, L2_HR_LakeSP and L2_HR_PIXCVec products
- Improved geolocation library (used by RiverObs and LOCNES)
- Module to generate L2_HR_Raster products (under development, not yet included)
- Flooplain DEM prototype
- Overall script permitting to run all steps consecutively (with example dataset)
- Tools for file format conversion etc.
- Potentially other modules in the future
release_version_10_28_2021 branch
develop branch
commit 3895abe8e7a5f3b224efd80b939889083c72364f Merge: 87e7c02 ed226f6 Author: Cassie Stuurman cassie.stuurman@jpl.nasa.gov Date: Tue Apr 6 12:29:09 2021 -0700
Merge branch 'develop' of https://github-fn.jpl.nasa.gov/SWOTAlgorithmFN/RiverObs into develop
updated batch validation tool for compatibility with plot reach
River database SWORD v8 available here: http://gaia.geosci.unc.edu/SWORD/SWORD_v08.zip
Don't forget to modify parameter_river.rdf reach_db_path (-) = /work/ALT/swot/swotpub/BD/BD_rivers/SWORD_v08/Reaches_Nodes/netcdf
You can also try to use a more recent RiverObs version, but don't forget to use the associated SWORD version.
Although the large-scale simulator included in the toolbox provides fairly representative statistical errors, several simplifications or approximations are made:
- Spherical Earth approximate geolocation equations (loss of accuracy at high latitudes, >60°)
- No topography is taken into account
- Radar geometry grid constructed on sphere
- No geometric distortions, no layover
- Simplified representation of water height (several options)
- Spatially constant height for each water body (but possibility to vary height over time, cycle)
- Spatially random correlated heights, and 2D polynomial model (with synthetic slopes)
- Also possible to inject “true” heights from models (after simulation)
- Random effective instrument noise added to height (and propagated to geolocation)
- Idealized pixel cloud processing
- Synthetic "dark water" model (correlated random fields used to simulate low reflectivity areas)
- Geoid (mean tide corrected EGM-2008), tropospheric and cross-over residual errors simulated
When to use the simulator:
- To familiarize with SWOT HR products, if needed over large areas and over time (multitemporal series)
- To study the inpact of the geometrical shapes of the water bodies on River and Lake processing
- When a simplified representation of phenomenology, hydrological characteristics and errors is sufficient (e.g. no layover, artifical water slope, basic error models)
If a higher degree of realism is necessary to conduct a study, lower-level simulators and processors need to be employed.
These are not publicly available, but SWOT Science Team members can contact the SWOT Algorithm Development Team for support.
Product formats and algorithms:
- The product formats correspond to the current official versions, but are likely to evolve. Some data fields are at this stage void (various flags, some uncertainty indicators…).
- The processing algorithms will also continue to evolve, as today's prototypes are progessively refined into operational software.
Last modifications: In the large scale simulator:
- Uncertainties of geolocated heights added
- Multilook adaptive averaging implemented
- Land pixels around water bodies added (label 1 and 2 in classification field)
- Near-range computaton improved
- Some fields added or made more realistic
In the processing chain
- Lake tile processing improved, new product format (three shapefiles)
- Lake single pass processing added (cf leman and france_pekel new dataset to test it, can't be pushed on github, but can't be share through CNES cluster if needed)
% python ../../scripts/laketile_to_lakesp.py output/lakesp rdf/multi_lake_sp_command.cfg output/lake/lake-annotation_*
- Clone swot_hydrology_toolbox repo
% git clone https://github.com/cnes/swot-hydrology-toolbox.git
The repository swot_hydrology_toolbox should be assignated to the SWOT_HYDROLOGY_TOOLBOX variable.
% export SWOT_HYDROLOGY_TOOLBOX=your_installation_path/swot-hydrology-toolbox
- Clone RiverObs repo
% git clone https://github.com/SWOTAlgorithms/RiverObs.git
The repository RiverObs should be assignated to the RIVEROBS variable.
% export RIVEROBS=your_installation_path/RiverObs
The dependencies of swot-hydrology-toolbox are:
- GDAL
- netcdf
- proj4
- libspatialindex
- CGAL (optional, if using HULL_METHOD=1.0)
- and the following Python modules:
- numpy
- scipy
- matplotlib
- scikit-learn
- scikit-image
- lxml
- netCDF4
- xarray
- dask
- distributed
- pyproj
- jupyter
- notebook
- statsmodels
- pysal
- pandas
- pytables
- Shapely
- Fiona
- sphinx
- numpydoc
- rtree
- mahotas
- utm
- pygeodesy
name: sht_env_test channels:
- conda-forge
- defaults dependencies:
- cgal=4.12=py36h8634a1c_1
- _libgcc_mutex=0.1=main
- alabaster=0.7.12=py36_0
- asn1crypto=0.24.0=py36_0
- atomicwrites=1.3.0=py_0
- attrs=18.2.0=py36h28b3542_0
- babel=2.6.0=py36_0
- backcall=0.1.0=py36_0
- blas=1.0=mkl
- bleach=3.0.2=py36_0
- blosc=1.14.4=hdbcaa40_0
- bokeh=1.0.3=py36_0
- boost-cpp=1.67.0=h14c3975_4
- bzip2=1.0.6=h14c3975_5
- ca-certificates=2019.1.23=0
- cairo=1.14.12=h8948797_3
- certifi=2018.11.29=py36_0
- cffi=1.11.5=py36he75722e_1
- cftime=1.0.3.4=py36hdd07704_0
- chardet=3.0.4=py36_1
- click=7.0=py36_0
- click-plugins=1.0.4=py36_0
- cligj=0.5.0=py36_0
- cloudpickle=0.6.1=py36_0
- cryptography=2.4.2=py36h1ba5d50_0
- curl=7.63.0=hbc83047_1000
- cycler=0.10.0=py36_0
- cytoolz=0.9.0.1=py36h14c3975_1
- dask=1.0.0=py36_0
- dask-core=1.0.0=py36_0
- dbus=1.13.2=h714fa37_1
- decorator=4.3.0=py36_0
- descartes=1.1.0=py36_0
- distributed=1.25.2=py36_0
- docutils=0.14=py36_0
- entrypoints=0.2.3=py36_2
- expat=2.2.6=he6710b0_0
- fiona=1.8.4=py36hc38cc03_0
- fontconfig=2.13.0=h9420a91_0
- freetype=2.9.1=h8a8886c_1
- freexl=1.0.5=h14c3975_0
- gdal=2.3.3=py36hbb2a789_0
- geopandas=0.4.0=py36_1
- geos=3.7.1=he6710b0_0
- giflib=5.1.4=h14c3975_1
- git=2.20.1=pl526hacde149_0
- glib=2.56.2=hd408876_0
- gmp=6.1.2=h6c8ec71_1
- gst-plugins-base=1.14.0=hbbd80ab_1
- gstreamer=1.14.0=hb453b48_1
- hdf4=4.2.13=h3ca952b_2
- hdf5=1.10.4=hb1b8bf9_0
- heapdict=1.0.0=py36_2
- icu=58.2=h9c2bf20_1
- idna=2.8=py36_0
- imageio=2.4.1=py36_0
- imagesize=1.1.0=py36_0
- intel-openmp=2019.1=144
- ipykernel=5.1.0=py36h39e3cac_0
- ipython=7.2.0=py36h39e3cac_0
- ipython_genutils=0.2.0=py36_0
- ipywidgets=7.4.2=py36_0
- jedi=0.13.2=py36_0
- jinja2=2.10=py36_0
- jpeg=9b=h024ee3a_2
- json-c=0.13.1=h1bed415_0
- jsonschema=2.6.0=py36_0
- jupyter=1.0.0=py36_7
- jupyter_client=5.2.4=py36_0
- jupyter_console=6.0.0=py36_0
- jupyter_core=4.4.0=py36_0
- kealib=1.4.7=hd0c454d_6
- kiwisolver=1.0.1=py36hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libboost=1.67.0=h46d08c1_4
- libcurl=7.63.0=h20c2e04_1000
- libdap4=3.19.1=h6ec2957_0
- libedit=3.1.20170329=h6b74fdf_2
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgdal=2.3.3=h2e7e64b_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libkml=1.3.0=h590aaf7_4
- libllvm10=10.0.1=hbcb73fb_5
- libnetcdf=4.6.1=h11d0813_2
- libpng=1.6.36=hbc83047_0
- libpq=11.1=h20c2e04_0
- libsodium=1.0.16=h1bed415_0
- libspatialindex=1.8.5=h20b78c2_2
- libspatialite=4.3.0a=hb08deb6_19
- libssh2=1.8.0=h1ba5d50_4
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.9=he85c1e1_2
- libuuid=1.0.3=h1bed415_2
- libxcb=1.13=h1bed415_1
- libxml2=2.9.8=h26e45fe_1
- libxslt=1.1.32=h1312cb7_0
- line_profiler=2.1.2=py36h14c3975_0
- llvmlite=0.34.0=py36h269e1b5_4
- locket=0.2.0=py36_1
- lxml=4.3.0=py36hefd8a0e_0
- lzo=2.10=h49e0be7_2
- markupsafe=1.1.0=py36h7b6447c_0
- matplotlib=3.0.2=py36h5429711_0
- mistune=0.8.4=py36h7b6447c_0
- mkl=2019.1=144
- mkl_fft=1.0.10=py36ha843d7b_0
- mkl_random=1.0.2=py36hd81dba3_0
- more-itertools=5.0.0=py36_0
- mpfr=4.0.1=hdf1c602_3
- msgpack-python=0.5.6=py36h6bb024c_1
- munch=2.3.2=py36_0
- mypy=0.660=py36_0
- mypy_extensions=0.4.1=py36_0
- nbconvert=5.3.1=py36_0
- nbformat=4.4.0=py36_0
- ncurses=6.1=he6710b0_1
- netcdf4=1.4.2=py36h808af73_0
- networkx=2.2=py36_1
- notebook=5.7.4=py36_0
- numba=0.51.2=py36h0573a6f_1
- numexpr=2.6.9=py36h9e4a6bb_0
- numpy=1.15.4=py36h7e9f1db_0
- numpy-base=1.15.4=py36hde5b4d6_0
- numpydoc=0.8.0=py36_0
- olefile=0.46=py36_0
- openjpeg=2.3.0=h05c96fa_1
- openssl=1.1.1b=h7b6447c_0
- packaging=18.0=py36_0
- pandas=0.23.4=py36h04863e7_0
- pandoc=2.2.3.2=0
- pandocfilters=1.4.2=py36_1
- parso=0.3.1=py36_0
- partd=0.3.9=py36_0
- patsy=0.5.1=py36_0
- pcre=8.42=h439df22_0
- perl=5.26.2=h14c3975_0
- pexpect=4.6.0=py36_0
- pickleshare=0.7.5=py36_0
- pillow=5.4.1=py36h34e0f95_0
- pip=18.1=py36_0
- pixman=0.36.0=h7b6447c_0
- pluggy=0.8.1=py36_0
- poppler=0.65.0=h581218d_1
- poppler-data=0.4.9=0
- proj4=5.2.0=he6710b0_1
- prometheus_client=0.5.0=py36_0
- prompt_toolkit=2.0.7=py36_0
- psutil=5.4.8=py36h7b6447c_0
- psycopg2=2.7.6.1=py36h1ba5d50_0
- ptyprocess=0.6.0=py36_0
- py=1.7.0=py36_0
- pycparser=2.19=py36_0
- pygments=2.3.1=py36_0
- pyopenssl=18.0.0=py36_0
- pyparsing=2.3.0=py36_0
- pyproj=1.9.5.1=py36h14380d9_1
- pyqt=5.9.2=py36h05f1152_2
- pysal=1.14.4.post1=py36_1
- pyshp=2.0.1=py36_0
- pysocks=1.6.8=py36_0
- pytables=3.4.4=py36h71ec239_0
- pytest=4.2.0=py36_0
- python=3.6.7=h0371630_0
- python-dateutil=2.7.5=py36_0
- pytz=2018.7=py36_0
- pywavelets=1.0.1=py36hdd07704_0
- pyyaml=3.13=py36h14c3975_0
- pyzmq=17.1.2=py36h14c3975_0
- qt=5.9.7=h5867ecd_1
- qtconsole=4.4.3=py36_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py36_0
- rtree=0.8.3=py36_0
- scikit-image=0.14.1=py36he6710b0_0
- scikit-learn=0.20.2=py36hd81dba3_0
- scipy=1.1.0=py36h7c811a0_2
- send2trash=1.5.0=py36_0
- setuptools=40.6.3=py36_0
- shapely=1.6.4=py36h86c5351_0
- sip=4.19.8=py36hf484d3e_0
- six=1.12.0=py36_0
- snappy=1.1.7=hbae5bb6_3
- snowballstemmer=1.2.1=py36_0
- sortedcontainers=2.1.0=py36_0
- sphinx=1.8.2=py36_0
- sphinxcontrib=1.0=py36_1
- sphinxcontrib-websupport=1.1.0=py36_1
- sqlalchemy=1.2.16=py36h7b6447c_0
- sqlite=3.26.0=h7b6447c_0
- statsmodels=0.9.0=py36h035aef0_0
- tbb=2020.3=hfd86e86_0
- tbb4py=2020.3=py36hfd86e86_0
- tblib=1.3.2=py36_0
- terminado=0.8.1=py36_1
- testpath=0.4.2=py36_0
- tk=8.6.8=hbc83047_0
- toolz=0.9.0=py36_0
- tornado=5.1.1=py36h7b6447c_0
- traitlets=4.3.2=py36_0
- typed-ast=1.1.0=py36h14c3975_0
- urllib3=1.24.1=py36_0
- wcwidth=0.1.7=py36_0
- webencodings=0.5.1=py36_1
- wheel=0.32.3=py36_0
- widgetsnbextension=3.4.2=py36_0
- xarray=0.11.0=py36_0
- xerces-c=3.2.2=h780794e_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.2.5=hf484d3e_1
- zict=0.1.3=py36_0
- zlib=1.2.11=h7b6447c_3
To create a conda environment, execute
cd $SWOT_HYDROLOGY_TOOLBOX
conda env create -f environment.yml
To activate this environment, if the first option was used, type
conda activate swot-env
To deactivate this environment, type
conda deactivate
Then, you will need to install manually utm and pygeodesy packages with 'pip' or 'easy_install':
pip install utm
pip install PyGeodesy=='20.05.20
After activating your Python environment, you have to set your PYTHONPATH variables:
export PYTHONPATH=$SWOT_HYDROLOGY_TOOLBOX/processing/:$PYTHONPATH
export PYTHONPATH=$SWOT_HYDROLOGY_TOOLBOX/processing/src/:$PYTHONPATH
export PYTHONPATH=$SWOT_HYDROLOGY_TOOLBOX/processing/src/cnes/sas:$PYTHONPATH
export PYTHONPATH=$SWOT_HYDROLOGY_TOOLBOX/sisimp/:$PYTHONPATH
export PYTHONPATH=$RIVEROBS/src:$PYTHONPATH
An example dataset showing how to configure and run simulation and processing is available under /test.
The needed input for the overall chain include:
- An orbit file (provided)
- A water mask in shapefile format covering the area you want so simulate (see example under /test)
- A river database in shapefile format (e.g. GRWL)
- A lake database in shapefile format
- Various configuration files (examples provided)
The difference step are described below :
The WIKI section contains a more details description of the simulation steps and the associated parameters.
% python $SWOT_HYDROLOGY_TOOLBOX/select_orbit_cnes/select_orbit_cnes.py rdf/parameter_orbit.rdf output/orbit
% python $SWOT_HYDROLOGY_TOOLBOX/sisimp/proc_sisimp.py rdf/parameter_sisimp.rdf
% python $SWOT_HYDROLOGY_TOOLBOX/scripts/l2pixc_to_rivertile.py output/simu output/river rdf/parameter_river.rdf
% python $SWOT_HYDROLOGY_TOOLBOX/scripts/rivertile_to_laketile.py output/river output/laketile rdf/parameter_lak
etile.cfg -output_dir_lakesp output/lakesp