SQLAlchemy SQLFlite ADBC Dialect
Basic SQLAlchemy dialect for SQLFlite
$ pip install sqlalchemy-sqlflite-adbc-dialect
git clone https://github.com/prmoore77/sqlalchemy-sqlflite-adbc-dialect
cd sqlalchemy-sqlflite-adbc-dialect
# Create the virtual environment
python3 -m venv .venv
# Activate the virtual environment
. .venv/bin/activate
# Upgrade pip, setuptools, and wheel
pip install --upgrade pip setuptools wheel
# Install SQLAlchemy SQLFlite ADBC Dialect - in editable mode with dev dependencies
pip install --editable .[dev]
For the following commands - if you running from source and using --editable
mode (for development purposes) - you will need to set the PYTHONPATH environment variable as follows:
export PYTHONPATH=$(pwd)/src
Once you've installed this package, you should be able to just use it, as SQLAlchemy does a python path search
Start a SQLFlite Server - example below - see https://github.com/voltrondata/SQLFlite for more details
docker run --name sqlflite \
--detach \
--rm \
--tty \
--init \
--publish 31337:31337 \
--env TLS_ENABLED="1" \
--env SQLFLITE_PASSWORD="sqlflite_password" \
--env PRINT_QUERIES="1" \
--pull missing \
voltrondata/sqlflite:latest
import os
import logging
from sqlalchemy import create_engine, MetaData, Table, select, Column, text, Integer, String, Sequence
from sqlalchemy.orm import Session
from sqlalchemy.orm import declarative_base
from sqlalchemy.engine.url import URL
# Setup logging
logging.basicConfig()
logging.getLogger('sqlalchemy.engine').setLevel(logging.INFO)
Base = declarative_base()
class FakeModel(Base): # type: ignore
__tablename__ = "fake"
id = Column(Integer, Sequence("fakemodel_id_sequence"), primary_key=True)
name = Column(String)
def main():
# Build the URL
url = URL.create(drivername="sqlflite",
host="localhost",
port=31337,
username=os.getenv("SQLFLITE_USERNAME", "sqlflite_username"),
password=os.getenv("SQLFLITE_PASSWORD", "sqlflite_password"),
query={"disableCertificateVerification": "True",
"useEncryption": "True"
}
)
print(f"Database URL: {url}")
engine = create_engine(url=url)
Base.metadata.create_all(bind=engine)
metadata = MetaData()
metadata.reflect(bind=engine)
for table_name in metadata.tables:
print(f"Table name: {table_name}")
with Session(bind=engine) as session:
# Try ORM
session.add(FakeModel(id=1, name="Joe"))
session.commit()
joe = session.query(FakeModel).filter(FakeModel.name == "Joe").first()
assert joe.name == "Joe"
# Execute some raw SQL
results = session.execute(statement=text("SELECT * FROM fake")).fetchall()
print(results)
# Try a SQLAlchemy table select
fake: Table = metadata.tables["fake"]
stmt = select(fake.c.name)
results = session.execute(statement=stmt).fetchall()
print(results)
if __name__ == "__main__":
main()
Much code and inspiration was taken from repo: https://github.com/Mause/duckdb_engine