Materials of the Nordic Probabilistic AI School (ProbAI) 2021.
- Day 1 (June 14):
- [materials] Antonio Salmerón - Introduction to Probabilistic Models
- [materials] Andrés R. Masegosa & Thomas D. Nielsen - Probabilistic Programming
- Day 2 (June 15):
- [slides] Arto Klami – Variational Inference and Optimization (part 1)
- [materials] Andrés R. Masegosa & Thomas D. Nielsen – Variational Inference and Probabilistic Programming (part 1)
- Day 3 (June 16):
- [slides] Evrim Acar Ataman – Tensor Factorizations for Physical, Chemical, and Biological Systems
- [slides] Arto Klami – Variational Inference and Optimization (part 2)
- [materials] Andrés R. Masegosa & Thomas D. Nielsen – Variational Inference and Probabilistic Programming (part 2)
- Day 4 (June 17):
- [slides] Wilker Aziz - Deep Discrete Latent Variable Models
- [notebook, slides] Francisco J. R. Ruiz - Variational Inference with Implicit and Semi-Implicit Distributions
- Day 5 (June 18):
- [slides] Mihaela Rosca - How to Build a GAN Loss from Distributional Divergences and Distances
- [slide, notebook [solution]] Didrik Nielsen - Normalizing Flows
- [notebook] Çağatay Yıldız - Neural ODE & ODE2VAE