@article{pessa2021ordpy,
title = {ordpy: A Python package for data analysis with permutation entropy and ordinal network methods},
author = {Arthur A. B. Pessa and Haroldo V. Ribeiro},
journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science},
volume = {31},
number = {6},
pages = {063110},
year = {2021},
doi = {10.1063/5.0049901},
}
ordpy implements the following data analysis methods:
Released on version 1.0 (February 2021):
Permutation entropy for time series [2] and images [3];
Complexity-entropy plane for time series [4], [5] and
images [3];
Multiscale complexity-entropy plane for time series [6] and
images [7];
Tsallis [8] and Rényi [9] generalized complexity-entropy
curves for time series and images;
Ordinal networks for time series [10], [11] and
images [12];
Global node entropy of ordinal networks for
time series [13], [11] and images [12].
Missing ordinal patterns [14] and missing transitions between ordinal
patterns [11] for time series and images.
Released on version 1.1.0 (January 2023):
Weighted permutation entropy for time series [15] and images;
Fisher-Shannon plane for time series [16] and images;
Permutation Jensen-Shannon distance for time series [17] and images;
Four pattern permutation contrasts (up-down balance, persistence,
rotational-asymmetry, and up-down scaling.) for time series [18];
We provide a notebook
illustrating how to use ordpy. This notebook reproduces all figures of our
article [1]. The code below shows simple applications of ordpy.
Pull requests addressing errors or adding new functionalities are always welcome.
References
[1]
(1, 2, 3) Pessa, A. A. B., & Ribeiro, H. V. (2021). ordpy: A Python package
for data analysis with permutation entropy and ordinal networks methods.
Chaos, 31, 063110.
[2]
(1, 2) Bandt, C., & Pompe, B. (2002). Permutation entropy: A Natural
Complexity Measure for Time Series. Physical Review Letters, 88, 174102.
[3]
(1, 2) Ribeiro, H. V., Zunino, L., Lenzi, E. K., Santoro, P. A., &
Mendes, R. S. (2012). Complexity-Entropy Causality Plane as a Complexity
Measure for Two-Dimensional Patterns. PLOS ONE, 7, e40689.
Rosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., &
Fuentes, M. A. (2007). Distinguishing Noise from Chaos. Physical Review
Letters, 99, 154102.
Zunino, L., Soriano, M. C., & Rosso, O. A. (2012).
Distinguishing Chaotic and Stochastic Dynamics from Time Series by Using
a Multiscale Symbolic Approach. Physical Review E, 86, 046210.
Ribeiro, H. V., Jauregui, M., Zunino, L., & Lenzi, E. K.
(2017). Characterizing Time Series Via Complexity-Entropy Curves.
Physical Review E, 95, 062106.
Jauregui, M., Zunino, L., Lenzi, E. K., Mendes, R. S., &
Ribeiro, H. V. (2018). Characterization of Time Series via Rényi
Complexity-Entropy Curves. Physica A, 498, 74-85.
Small, M. (2013). Complex Networks From Time Series: Capturing
Dynamics. In 2013 IEEE International Symposium on Circuits and Systems
(ISCAS2013) (pp. 2509-2512). IEEE.
[11]
(1, 2, 3) Pessa, A. A. B., & Ribeiro, H. V. (2019). Characterizing Stochastic
Time Series With Ordinal Networks. Physical Review E, 100, 042304.
[12]
(1, 2) Pessa, A. A. B., & Ribeiro, H. V. (2020). Mapping Images Into
Ordinal Networks. Physical Review E, 102, 052312.
McCullough, M., Small, M., Iu, H. H. C., & Stemler, T. (2017).
Multiscale Ordinal Network Analysis of Human Cardiac Dynamics.
Philosophical Transactions of the Royal Society A, 375, 20160292.
Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2007).
True and False Forbidden Patterns in Deterministic and Random Dynamics.
Europhysics Letters, 79, 50001.
Fadlallah B., Chen, B., Keil A. & Príncipe, J. (2013).
Weighted-permutation entropy: a complexity measure for time series
incorporating amplitude information. Physical Review E, 97, 022911.
Olivares, F., Plastino, A., & Rosso, O. A. (2012).
Contrasting chaos with noise via local versus global
information quantifiers. Physics Letters A, 376, 1577–1583.
Zunino L., Olivares, F., Ribeiro H. V. & Rosso, O. A. (2022).
Permutation Jensen-Shannon distance: A versatile and fast symbolic tool
for complex time-series analysis. Physical Review E, 105, 045310.