-
Objective
- Simple example for DL/ML primer
-
Toolkit
-
Python 2.7 or 3.5
-
Numpy version >= 1.13.1 Tensorflow version >= 1.0.1 Keras version >= 2.0.6 Sklearn version >= 0.18.2
-
Dataset: breast cancer wisconsin dataset (classification)
Item Description Classes 2 Samples per class 212(M),357(B) Samples total 569 Dimensionality 30 Features real, positive -
Model: Affine Neural Network(ANN) (fully-connected)
Item | Description |
---|---|
Samples total | 506 |
Dimensionality | 13 |
Features | real, positive |
Targets | real 5. - 50. |
-
Dataset: breast cancer wisconsin dataset (classification)
Item Description Classes 2 Samples per class 212(M),357(B) Samples total 569 Dimensionality 30 Features real, positive -
Model: Logistic Regression
-
Dataset: Olivetti faces data-set from AT&T
- Total 400 images, 64*64 pixels, 40 classes(40 people), 10 faces with various emotions each person
-
Model: SVM (support vector machine)
-
LinearRegression with kernel function => kernel model
-
Dataset: iris dataset (classification)
Item Description Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive -
Model: Decision Tree
-
Dataset: breast cancer wisconsin dataset (classification)
Item Description Classes 2 Samples per class 212(M),357(B) Samples total 569 Dimensionality 30 Features real, positive -
Model: AdaBoost
-
kMeans_validity-index.ipynb (More completed, with clustering validity index)
-
Dataset: iris dataset (classification)
Item Description Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive -
Model: kMeans