Current progress is updated in progress.txt
中文版欢迎关注我的CSDN
-
Linear Algebra
-
Calculus
-
Statistical Measures
- Standard Deviation vs Standard Error
- Margin of Error
- Statistical Inference
- Confidence Intervals
- Expected Value
- Statistical Power
- P-values
- Statistical Significance
- Bias
- Variance&Standard Deviation
- Covariance
- Correlation
- Joint Variability
- Bessel’s Correction
- Degrees of Freedom
- Cardinality
- Entropy
- Probability Distributions
-
Feature Engineering
-
Feature Selection
-
Model Evaluation
- Model_Eval
- Offline Metrics
- Online Metrics
-
Training Pipeline
-
Linear Regression
- Overview
- Assumptions of Linear Regression
- Performance Metrics for Linear Regression
-
Logistic Regression
-
Decision Trees
-
T-SNE
-
Dimensionality Reduction
-
Neural Network
-
Feed Forward Neural Network (FFNN)
-
Activation Functions
-
Backpropagation
-
Neural Network Layers
-
Neural Network Models
-
Loss Functions
- Overview
- Classification Tasks:
- Regression Tasks:
-
Optimization Algorithms
-
Regularization
-
Normalization
-
Convolutional Neural Networks (CNN)
-
Recurrent Neural Networks (RNN)
-
Transformer Networks
- Overview
- Language Model Evaluation Metrics
- Perplexity
- [Other relevant metrics...]
- RNN (Recurrent Neural Networks)
- CNN (Convolutional Neural Networks)
- Transformers
- Original Transformer
- BERT (Bidirectional Encoder Representations from Transformers)
- GPT (Generative Pre-trained Transformer)
- T5 (Text-to-Text Transfer Transformer)
- Model Comparisons: CNN vs. RNN vs. Transformer
- Overview
- Generative Adversarial Networks (GANs)
- Variational Autoencoders (VAEs)
- Applications of Generative AI
- Embedding