CT framework

Example call:

python train.py --setup=3 --dataperc=75 --epochs=100 --lr=1e-5 --eps=1e-5 --alg=ADR --iterates=100 --valid=10 --batch-size=20 --detectors=128 --gpu=1 --noise=0.03 --load=False --seed=10 --wclip=False

Description

This framework was created in order to help compare learned and variational approaches to CT reconstruction in a systematic way. The implementation is based on python libraries odl and pyTorch. The list of implemented algorithms include:

In order to add your own algorithms to the list, create a new file in the Algorithms folder in the form name.py and use BaseAlg.py as the template.