Pinned Repositories
-
华为人口年龄预测
100-Days-Of-ML-Code
100-Days-Of-ML-Code中文版
18.06-linalg-notes
MIT-18.06-线性代数-完整笔记
2018_CCF_BDCI_ChinaUnicom_Package_Match_Rank6
联通研究院-面向电信行业存量用户的智能套餐个性化匹配模型_复赛第6名
ActiveUserPrediction
predict app users that will be active in some period of time given log information of the users
ai_explore
机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现
Attentional-Neural-Factorization-Machine
Attention,Factorization Machine, Deep Learning, Recommender System
Avito_rank17
DeepFM_keras
A simple DeepFM.
eat_pytorch_in_20_days
Pytorch🍊🍉 is delicious, just eat it! 😋😋
pxp531's Repositories
pxp531/pxp531.github.io
pxp531/jetbra-server-rust
pxp531/RecommenderSystem
pxp531/torch-rechub
A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.
pxp531/Gitwork
用来练习Git等工具使用的
pxp531/Recommender-System-with-TF2.0
Recurrence the recommender paper with Tensorflow2.0
pxp531/eat_pytorch_in_20_days
Pytorch🍊🍉 is delicious, just eat it! 😋😋
pxp531/eat_tensorflow2_in_30_days
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋
pxp531/eat_pyspark_in_10_days
pyspark🍒🥭 is delicious,just eat it!😋😋
pxp531/Reflection_Summary
算法理论基础知识应知应会
pxp531/Play-with-Data-Structures
波波老师的数据结构课程的C++代码实现,和波波老师的代码库目录一样:)
pxp531/ai_explore
机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现
pxp531/recommender_systems_abc
基于netflix prize开源数据集,从零开始构建热门推荐、相似推荐、item-based协同过滤算法,并离线评估算法的效果precision/recall,将推荐结果存于Redis,并通过flask构建推荐web服务。
pxp531/risk-management-note
风险控制笔记,适用于互联网企业
pxp531/ICME2019-CTR
The Code for ICME2019 Grand Challenge: Short Video Understanding (Single Model Ranks 6th)
pxp531/interview_internal_reference
2019年最新总结,阿里,腾讯,百度,美团,头条等技术面试题目,以及答案,专家出题人分析汇总。
pxp531/Utils
pxp531/lofo-importance
Leave One Feature Out Importance
pxp531/MetaEmbedding
Codes for our SIGIR-2019 paper "Warm Up Cold-start Advertisements: Improving CTR Predictions via Learning to Learn ID Embeddings"
pxp531/recommend_sys
pxp531/kaggle-1
pxp531/wutils
general tools for ML
pxp531/-
华为人口年龄预测
pxp531/competitions_summary
pxp531/tql-Python
Python utils
pxp531/Elo-1
Elo_competition Kaggle https://www.kaggle.com/c/elo-merchant-category-recommendation
pxp531/categorical-encoding
A library of sklearn compatible categorical variable encoders
pxp531/umap
Uniform Manifold Approximation and Projection
pxp531/Kaggle
Jupyter Notebooks (Python), Python scripts, Jupyter Notebooks (R), R Markdown Notebooks, R scripts - for Kaggle datasets and competitions
pxp531/Play-with-Algorithm-Interview
Codes of my MOOC Course <Play with Algorithm Interviews>. Updated contents and practices are also included. 我在慕课网上的课程《玩儿转算法面试》示例代码。课程的更多更新内容及辅助练习也将逐步添加进这个代码仓。