Available Models
from lexica import Client
def main() -> dict:
client = Client()
response = client.getModels()
return response
if __name__ == "__main__":
print(main())
output
{
"text": [
{
"id": 0,
"name": "models/text-bison-001",
"baseModel": "PaLM"
}
],
"chat": [
{
"id": 1,
"name": "models/chat-bison-001",
"baseModel": "PaLM"
},
{
"id": 5,
"name": "gpt-3.5-turbo",
"baseModel": "GPT"
}
],
"image": [
{
"id": 2,
"name": "MeinaMix",
"baseModel": "SD"
},
{
"id": 3,
"name": "AnyLora",
"baseModel": "SD"
},
{
"id": 4,
"name": "AnyThingV4",
"baseModel": "SD"
},
{
"id": 6,
"name": "Bing",
"baseModel": "Dall-E"
},
{
"id": 7,
"name": "DarkSushi",
"baseModel": "SD"
},
{
"id": 8,
"name": "MeinaHentai",
"baseModel": "SD"
},
{
"id": 9,
"name": "DarkSushiMix",
"baseModel": "SD"
}
]
}
palm
from lexica import Client
def main(prompt: str) -> dict:
client = Client()
response = client.palm(prompt)
return response
if __name__ == "__main__":
print(main("hello world"))
upscaling an image.
from lexica import Client
def main(image: bytes) -> bytes:
client = Client()
imageBytes = client.upscale(image)
with open('upscaled.png', 'wb') as f:
f.write(imageBytes)
if __name__ == "__main__":
image = open('examples/images/image.png', 'rb').read()
main(image)