*Qihang Fang, *Yingda Yin, †Qingnan Fan, Fei Xia, Siyan Dong, Sheng Wang, Jue Wang, Leonidas Guibas, †Baoquan Chen
*Equal contribution; ordered alphabetically | †Corresponding authors | Video | arXiv
git clone https://github.com/qhFang/AccurateACL.git --recursive
pip install -r requirements.txt
The docker image contains a proper environment for the random forest. Run the following command to use the image.
docker pull qihfang/spaint_python3.6.8_cuda10.0_torch1.9.0_spaint:v1.0
-
Dependencies
- ArrayFire (version 3.3.2) Status: Optional (needed for touch interaction and median filtering) Default: Disabled Flag: WITH_ARRAYFIRE - Boost (version 1.58.0) Status: Required - CUDA (version 7.5 or above) Status: Optional (needed for GPU acceleration) Default: Enabled Flag: WITH_CUDA - Eigen (version 3.2.2) Status: Required - GLEW (version 1.12.0) Status: Required on Windows/Ubuntu - InfiniTAM (version 3.5) Status: Required - Leap Motion SDK (version 2.2.1.24116) Status: Optional (needed for experimental Leap Motion support) Default: Disabled Flag: WITH_LEAP - Oculus SDK (version 0.5.0.1) Status: Optional (needed for Oculus Rift support) Default: Disabled Flag: WITH_OVR - OpenCV (version 3.1.0) Status: Optional (needed for feature inspection mode) Default: Disabled Flag: WITH_OPENCV - OpenGL Status: Required - OpenMP Status: Optional, but recommended (needed for faster training/prediction) Default: Disabled Flag: WITH_OPENMP Notes: Doesn't work on Mac OS X - OpenNI (version 2) Status: Optional, but recommended (needed for live reconstruction) Default: Disabled Flag: WITH_OPENNI - SDL (version 2-2.0.7) Status: Required - Vicon SDK Status: Optional (needed for the Vicon tracker) Default: Disabled Flag: WITH_VICON
-
Build ALGLIB
cd extensions/spaint/libraries ./build-alglib-nix.sh
-
Build
Please make sure that the BUILD_GROVE, BUILD_GROVE_APPS, WITH_ALGLIB and WITH_OPENCV are set to ON and the ALGLIB_INCLUDE_DIR, ALGLIB_LIBRARY and ALGLIB_ROOT are set to your path.
cd .. ./build-nix.sh "Unix Makefiles" Release cd build ccmake .. make -j8
Please specify the paths in global_setting.py
to your paths.
In the paper, we evaluate our algorithm on the ACL-Synthetic and ACL-Real datasets.
Some virtualizations of ACL-Synthetic dataset
Some virtualizations of ACL-Real dataset
The ACL-Synthetic and ACL-Real datasets can be downloaded here.
We further collect 120 high-quality indoor scenes. For each scene, we provide a .max format file which contains 3D models for all the furnitures with textures, and lighting effects, shading, and other 3D design elements.
Panorama example of ACL-Origin:
Rendering example of ACL-Origin:
ACL-Origin.mp4
The ACL-Origin datasets can be downloaded here.
python train/trainer.py --exp_name=training --env=EnvRelocUncertainty-v0 --net_type=uncertainty \
--snapshot_mode=all --batch_B=5 --batch_T=800 --batch_nn=40 --gpu=0 --gpu_cpp=1 --gpu_render=1 \
--cfg=configs/train.yaml
python test/policy_test.py \
--exp-name=test --scene-name=I43 --seq-name=seq-50cm-60deg \
--net-type=uncertainty --env=EnvRelocUncertainty-v0 --ckpt=ckpt/pretrained_model.pkl \
--cfg=configs/test.yaml --cuda-idx=0
@article{fang2022towards,
title={Towards Accurate Active Camera Localization},
author={Fang, Qihang and Yin, Yingda and Fan, Qingnan and Xia, Fei and Dong, Siyan and Wang, Sheng and Wang, Jue and Guibas, Leonidas and Chen, Baoquan},
journal={ECCV},
year={2022}
}
For any questions, feel free to contact the authors.
Qihang Fang: qihfang@gmail.com
Yingda Yin: yingda.yin@gmail.com
Qingnan Fan: fqnchina@gmail.com
This work was supported in part by NSFC Projects of International Cooperation and Exchanges (62161146002), NSF grant IIS-1763268, a Vannevar Bush Faculty Fellowship, and a gift from the Amazon Research Awards program.
Our RL framework is based on RLPYT by Adam Stooke et al. and the passive relocalizer module is based on spaint by Stuart Golodetz et al.