/learning_to_rank

利用lightgbm做(learning to rank)排序学习,包括数据处理、模型训练、模型决策可视化、模型可解释性以及预测等。Use LightGBM to learn ranking, including data processing, model training, model decision visualization, model interpretability and prediction, etc.

Primary LanguagePython

利用lightgbm做learning to rank 排序,主要包括:

  • 数据预处理
  • 模型训练
  • 模型决策可视化
  • 预测
  • ndcg评估
  • 特征重要度
  • SHAP特征贡献度解释
  • 样本的叶结点输出

(要求安装lightgbm、graphviz、shap等)

一.data format (raw data -> (feats.txt, group.txt))

python lgb_ltr.py -process
1.raw_train.txt

0 qid:10002 1:0.007477 2:0.000000 ... 45:0.000000 46:0.007042 #docid = GX008-86-4444840 inc = 1 prob = 0.086622

0 qid:10002 1:0.603738 2:0.000000 ... 45:0.333333 46:1.000000 #docid = GX037-06-11625428 inc = 0.0031586555555558 prob = 0.0897452 ...

2.feats.txt:

0 1:0.007477 2:0.000000 ... 45:0.000000 46:0.007042

0 1:0.603738 2:0.000000 ... 45:0.333333 46:1.000000 ...

3.group.txt:

8

8

8

8

8

16

8

118

16

8

...

二.model train (feats.txt, group.txt) -> train -> model.mod

python lgb_ltr.py -train
train params = {
        'task': 'train',  # 执行的任务类型
        'boosting_type': 'gbrt',  # 基学习器
        'objective': 'lambdarank',  # 排序任务(目标函数)
        'metric': 'ndcg',  # 度量的指标(评估函数)
        'max_position': 10,  # @NDCG 位置优化
        'metric_freq': 1,  # 每隔多少次输出一次度量结果
        'train_metric': True,  # 训练时就输出度量结果
        'ndcg_at': [10],
        'max_bin': 255,  # 一个整数,表示最大的桶的数量。默认值为 255。lightgbm 会根据它来自动压缩内存。如max_bin=255 时,则lightgbm 将使用uint8 来表示特征的每一个值。
        'num_iterations': 200,  # 迭代次数,即生成的树的棵数
        'learning_rate': 0.01,  # 学习率
        'num_leaves': 31,  # 叶子数
        'max_depth':6,
        'tree_learner': 'serial',  # 用于并行学习,‘serial’: 单台机器的tree learner
        'min_data_in_leaf': 30,  # 一个叶子节点上包含的最少样本数量
        'verbose': 2  # 显示训练时的信息
    }
  • docs:7796
  • groups:380
  • consume time : 4 seconds
  • training's ndcg@10: 0.940891
1.model.mod(model的格式在data/model/mode.mod)

训练时的输出:

  • [LightGBM] [Info] Total Bins 9171
  • [LightGBM] [Info] Number of data: 7796, number of used features: 40
  • [LightGBM] [Debug] Trained a tree with leaves = 31 and max_depth = 9
  • [1] training's ndcg@10: 0.791427
  • [LightGBM] [Debug] Trained a tree with leaves = 31 and max_depth = 12
  • [2] training's ndcg@10: 0.828608
  • [LightGBM] [Debug] Trained a tree with leaves = 31 and max_depth = 10
  • ...
  • ...
  • ...
  • [198] training's ndcg@10: 0.941018
  • [LightGBM] [Debug] Trained a tree with leaves = 31 and max_depth = 11
  • [199] training's ndcg@10: 0.941038
  • [LightGBM] [Debug] Trained a tree with leaves = 31 and max_depth = 11
  • [200] training's ndcg@10: 0.940891
  • consume time : 4 seconds

三.模型决策过程的可视化生成

可指定树的索引进行可视化生成,便于分析决策过程。

python lgb_ltr.py -plottree

image

四.predict 数据格式如feats.txt,当然可以在每行后面加一个标识(如文档编号,商品编码等)作为排序的输出,这里我直接从test.txt中得到feats与comment作为predict

python lgb_ltr.py -predict
1.predict results
  • ['docid = GX252-32-5579630 inc = 1 prob = 0.190849'
  • 'docid = GX108-43-5342284 inc = 0.188670948386237 prob = 0.103576'
  • 'docid = GX039-85-6430259 inc = 1 prob = 0.300191' ...,
  • 'docid = GX009-50-15026058 inc = 1 prob = 0.082903'
  • 'docid = GX065-08-0661325 inc = 0.012907717401617 prob = 0.0312699'
  • 'docid = GX012-13-5603768 inc = 1 prob = 0.0961297']

五.validate ndcg 数据来自test.txt(data from test.txt)

python lgb_ltr.py -ndcg

all qids average ndcg: 0.761044123343

六.features 打印特征重要度(features importance)

python lgb_ltr.py -feature

模型中的特征是"Column_number",这里打印重要度时可以映射到真实的特征名,比如本测试用例是46个feature

1.features importance
  • feat0name : 228 : 0.038
  • feat1name : 22 : 0.0036666666666666666
  • feat2name : 27 : 0.0045
  • feat3name : 11 : 0.0018333333333333333
  • feat4name : 198 : 0.033
  • feat10name : 160 : 0.02666666666666667
  • ...
  • ...
  • ...
  • feat37name : 188 : 0.03133333333333333
  • feat38name : 434 : 0.07233333333333333
  • feat39name : 286 : 0.04766666666666667
  • feat40name : 169 : 0.028166666666666666
  • feat41name : 348 : 0.058
  • feat43name : 304 : 0.050666666666666665
  • feat44name : 283 : 0.04716666666666667
  • feat45name : 220 : 0.03666666666666667

七.利用SHAP值解析模型中特征重要度

python lgb_ltr.py -shap

这里不同于六中特征重要度的计算,而是利用博弈论的方法--SHAP(SHapley Additive exPlanations)来解析模型。 利用SHAP可以进行特征总体分析、多维特征交叉分析以及单特征分析等。

1.总体分析

image

image

2.多维特征交叉分析

image

3.单特征分析

image

八.利用模型得到样本叶结点的one-hot表示,可以用于像gbdt+lr这种模型的训练

python lgb_ltr.py -leaf

这里测试用例是test/leaf.txt 5个样本

[

  • [ 0. 1. 0. ..., 0. 0. 1.]
  • [ 1. 0. 0. ..., 0. 0. 0.]
  • [ 0. 0. 1. ..., 0. 0. 1.]
  • [ 0. 1. 0. ..., 0. 1. 0.]
  • [ 0. 0. 0. ..., 1. 0. 0.] ]

九.REFERENCES

https://github.com/microsoft/LightGBM

https://github.com/jma127/pyltr

https://github.com/slundberg/shap

contact

如有搜索、推荐、nlp以及大数据挖掘等问题或合作,可联系我:

1、我的github项目介绍:https://github.com/jiangnanboy

2、我的博客园技术博客:https://www.cnblogs.com/little-horse/

3、我的QQ号:2229029156