BrainCog is an open source spiking neural network based brain-inspired cognitive intelligence engine for Brain-inspired Artificial Intelligence and brain simulation. More information on BrainCog can be found on its homepage http://www.brain-cog.network/
BrainCog provides essential and fundamental components to model biological and artificial intelligence.
BrainCog currently provides cognitive functions components that can be classified into five categories:
- Perception and Learning
- Decision Making
- Motor Control
- Knowledge Representation and Reasoning
- Social Cognition
BrainCog currently include two parts for brain simulation:
- Brain Cognitive Function Simulation
- Multi-scale Brain Structure Simulation
The anatomical and imaging data is used to support our simulation from various aspects.
- CUDA toolkit == 11.
- numpy >= 1.21.2
- scipy >= 1.8.0
- h5py >= 3.6.0
- torch >= 1.10
- torchvision >= 0.12.0
- torchaudio >= 0.11.0
- timm >= 0.5.4
- matplotlib >= 3.5.1
- einops >= 0.4.1
- thop >= 0.0.31
- pyyaml >= 6.0
- loris >= 0.5.3
- pandas >= 1.4.2
- tonic (special)
- pandas >= 1.4.2
- xlrd == 1.2.0
# optional, if use datasets
git clone https://github.com/FloyedShen/tonic.git
cd tonic
pip install -e .
pip install -r requirements.txt
git clone https://github.com/BrainCog-X/Brain-Cog.git
cd BrainCog
pip install -e .
- Examples for Image Classification
cd ./examples/Perception_and_Learning/img_cls/bp
python main.py --model cifar_convnet --dataset cifar10 --node-type LIFNode --step 8 --device 0
- Examples for Event Classification
cd ./examples/Perception_and_Learning/img_cls/bp
python main.py --model dvs_convnet --node-type LIFNode --dataset dvsc10 --step 10 --batch-size 128 --act-fun QGateGrad --device 0
Other BrainCog features and tutorials can be found at http://www.brain-cog.network/docs/