- The code is tested on Linux with Python 3.10.
- Install requirements from
requirements.txt
before running.
This repo contains sub-module. Clone this repo:
git clone --recurse-submodules https://github.com/jhchan0805/ReLeaPS
- To train and evaluate on
CNN-PS
backbone, download the pre-trained modelweight_and_model.hdf5
todata
according to CNN-PS. - To train and evaluate on
PS-FCN
backbone, download the pre-trained modelPS-FCN_B_S_32_normalize.pth.tar
tosrc/PS-FCN/data/models
according to PS-FCN. - To evaluate on
DiLiGenT
dataset, downloadDiLiGenT.zip
todata
according to DiLiGenT.
-
Download the synthetic dataset (blobs & sculpture) for training from: datasets and place under
data
. -
Run
run_train.sh
.make train
- 这个 代码可以让你 使用 Makefile 里面定义好的
make train
指令, 这个的作用和run_train.sh
是一样的
- 这个 代码可以让你 使用 Makefile 里面定义好的
make benchmark
- 这个 代码可以让你 使用 Makefile 里面定义好的
make benchmark
指令
- 这个 代码可以让你 使用 Makefile 里面定义好的
- Train the models yourself or download the pre-trained models from: TBD and place under
data/models
. - Run
run_benchmark.sh
.
If you find our work useful for your research, please consider citing:
@InProceedings{jh2023releaps,
author = {Chan, Junhoong and Yu, Bohan and Guo, Heng and Ren, Jieji and Lu, Zongqing and Shi, Boxin},
title = {{ReLeaPS}: Reinforcement Learning-based Illumination Planning for Generalized Photometric Stereo},
booktitle = {Proceedings of the International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
}
Copyright (c) 2022-2023 Bohan Yu. All rights reserved.
ReLeaPS is free software licensed under GNU Affero General Public License version 3 or latter.