/MobileDetBenchmark

Mobile Detection Benchmark

Primary LanguageC++

Mobile Detection Benchmark

This repo is used to test the speed of the mobile terminal models

Benchmark Result

Model Input size mAPval
0.5:0.95
mAPval
0.5
Params
(M)
FLOPS
(G)
LatencyNCNN
(ms)
Latencylite
(ms)
Config
YOLOv3-Tiny 416*416 16.6 33.1 8.86 5.62 25.42 - model
link
YOLOv4-Tiny 416*416 21.7 40.2 6.06 6.96 23.69 - model
link
PP-YOLO-Tiny 320*320 20.6 - 1.08 0.58 6.75 - model
link
PP-YOLO-Tiny 416*416 22.7 - 1.08 1.02 10.48 - model
link
Nanodet-M 320*320 20.6 - 0.95 0.72 8.71 - model
link
Nanodet-M 416*416 23.5 - 0.95 1.2 13.35 - model
link
Nanodet-M 1.5x 416*416 26.8 - 2.08 2.42 15.83 - model
link
YOLOX-Nano 416*416 25.8 - 0.91 1.08 19.23 - model
link
YOLOX-Tiny 416*416 32.8 - 5.06 6.45 32.77 - model
link
YOLOv5n 640*640 28.4 46.0 1.9 4.5 40.35 - model
link
YOLOv5s 640*640 37.2 56.0 7.2 16.5 78.05 - model
link
PicoDet-S 320*320 27.1 41.4 0.99 0.73 8.13 6.65 model
link
PicoDet-S 416*416 30.6 45.5 0.99 1.24 12.37 9.82 model
link
PicoDet-M 320*320 30.9 45.7 2.15 1.48 11.27 9.61 model
link
PicoDet-M 416*416 34.3 49.8 2.15 2.50 17.39 15.88 model
link
PicoDet-L 320*320 32.6 47.9 3.24 2.18 15.26 13.42 model
link
PicoDet-L 416*416 35.9 51.7 3.24 3.69 23.36 21.85 model
link
PicoDet-L 640*640 40.3 57.1 3.24 8.74 54.11 50.55 model
link
PicoDet-Shufflenetv2 1x 416*416 30.0 44.6 1.17 1.53 15.06 10.63 model
link
PicoDet-MobileNetv3-large 1x 416*416 35.6 52.0 3.55 2.80 20.71 17.88 model
link
PicoDet-LCNet 1.5x 416*416 36.3 52.2 3.10 3.85 21.29 20.8 model
link
Table Notes:
  • Latency: All our models test on Qualcomm Snapdragon 865(4\*A77+4\*A55) with 4 threads by arm8 and with FP16. In the above table, test latency on NCNN and Lite->Paddle-Lite.
  • All model are trained on COCO train2017 dataset and evaluated on COCO val2017.

Support Library

TODO

TNN, MNN speed supplement, welcome to contribute!