ILest: Ionic Liquids Estimation
UW DIRECT Project on Ionic Liquids Machine Learning. The package contains tools and wrappers of existing Python infrastructure for data analysis (http://pandas.pydata.org/) and (http://scikit-learn.org/stable/) for the purpose of estimating desired properties of ionic liquid binary mixtures.
Contributors
Joseph Kasper, Hongbin Liu, Moke Mao, Sarah Floris
Documentation
See the examples directory
License
This software is released under the MIT license since it is a permissive free software license that has excellent compatibility with other licenses. See the LICENSE file for more information.
Code Structure
|---ionic_liquid (master)
|---ionic_liquid
|---__init__.py
|---version.py
|---main.py
|---util.py
|---datasets
|---compoundSMILES.xlsx
|---compounddata.xlsx
|---examples
|---Example_Workflow.ipynb
|---method
|---__init__.py
|---method.py
|---visualization
|---__init__.py
|---core.py
|---plot.py
|---test
|---test_utils.py
|---test_method.py
|---test_utils.py
|Interface.ipynb
|---doc
|---overview.md
|---functional_spec.md
|---code_struct.md
|---tutorial.md
|---runcell.png
|---model_train.png
|---model_read.png
|---README.md
|---LICENSE
|---setup.py
Directory Summary
-
datasets
contains the downloaded ionic liquids data. -
methods
contains the regression model used in this work. -
visualization
contains the plot function. -
test
is the folder for unit test. -
Interface.ipynb
is a portable entrance of the interface widgets. -
doc
contains documents, tutorial is also available in this directory. -
LICENSE
MIT license
Graphic User Interface (GUI)
The GUI provide a handy interface to choose the data set and the size of training and testing. After training the data, the regression model can be saved for the furure usage.
The GUI also provide a handy interface to load the regression model and predict the electrical conducitivity under different conditions.