This is Pytorch implementation of CartoonGAN [1] (CVPR 2018)
1. Download VGG19
python train.py
python test.py
The following shows basic folder structure.
├── data
│ ├── src_data # src data
│ │ ├── train
│ │ └── test
│ └── tgt_data # target data
│ ├── train
│ └── pair # edge-promoting results to be saved here
├── results
│ ├── test # test.py results to be saved
│ └── train # train.py results to be saved
│ ├── Reconstruction # pre-trained data to be saved
│ └── Transfer # trained data to be saved
│
├── train.py
├── test.py
├── edge_promoting.py
├── utils.py
├── networks.py
- Apple M1 Pro
- python 3.8.13
- pytorch 1.11.0
- torchvision 0.12.0
- opencv 4.6.0
[1] Chen, Yang, Yu-Kun Lai, and Yong-Jin Liu. "CartoonGAN: Generative Adversarial Networks for Photo Cartoonization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
(Full paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_CartoonGAN_Generative_Adversarial_CVPR_2018_paper.pdf)