Action Localization Benchmarks

Papers and Results of Temporal Action Localization

Weakly Supervised Performance on THUMOS'14 dataset.

  • The detectors are sorted by the mAP with threshold 0.5.
  • "c" indicates whether release code, yes (Y) or no (N).
  • "e" indicates the evaluation code, THUMOS (T), ActivityNet (A) or implemented by themselves.
Detector Pub c e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 avg info
EM-MIL ECCV20 N A 59.1 52.7 45.5 36.8 30.5 22.7 16.4 - - - Use existing classifiation results
ACL CVPR20 N A - - 46.9 38.9 30.1 19.8 10.4 - - - Report unsupervised performance as well
A2CL-PT ECCV20 N A 61.2 56.1 48.1 39.0 30.1 19.2 10.6 4.8 1.0 - Report unsupervised performance as well
WSTAL WACV20 - 62.3 - 46.8 - 29.6 - 9.7 - - - -
ActionBytes CVPR20 N A - - 43.0 37.5 29.0 - 9.5 - - - -
DGAM CVPR20 Y A 60.0 54.2 46.8 38.2 28.8 19.8 11.4 3.6 0.4 - -
TSCN ECCV20 N A 63.4 57.6 47.8 37.7 28.7 19.4 10.2 3.9 0.7 - -
BaSNet-I3D AAAI20 Y A 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5 - -
BaSNet-UNT AAAI20 Y A 56.2 50.3 42.8 34.7 25.1 17.1 9.3 3.7 0.5 - -
WSBM ICCV19 N A 60.4 56.0 46.6 37.5 26.8 17.6 9.0 3.3 0.4 - -
3C-Net ICCV19 Y I 59.1 53.5 44.2 34.1 26.6 - 8.1 - - - -
ASSG ACM 19 N 65.6 59.4 50.4 38.7 25.4 15.0 6.6 - - - -
TSM ICCV19 N T - - 39.5 31.9 24.5 13.8 7.1 - - 23.4 -
CleanNet ICCV19 N T - - 37.0 30.9 23.9 13.9 7.1 - - - -
CMCS-I3D CVPR19 Y T 57.4 50.8 41.2 32.1 23.1 15.0 7.0 - - - report avg-mAP
CMCS-UNT CVPR19 Y T 53.5 46.8 37.5 29.1 19.9 12.3 6.0 - - - -
STARNet AAAI19 N A 68.8 60.0 48.7 34.7 23.0 - - - - - -
W-TALC ECCV18 Y I 55.2 49.6 40.1 31.1 22.8 - - - - 7.6 -
AutoLoc ECCV18 Y T - - 35.8 29.0 21.2 13.4 5.8 - - - -
MAAN ICLR19 Y A 59.8 50.8 41.1 30.6 20.3 12.0 6.9 2.6 0.2 94.1 -
LTSR AAAI19 N T 55.9 46.9 38.3 28.1 18.6 11.0 5.59 2.19 0.29 - -
WSGN WACV20 - T 51.1 44.4 34.9 26.3 18.1 11.6 6.5 - - - -
STPN CVPR18 I A 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1 - -
CPMN ACCV18 N T 47.1 41.6 32.8 24.7 16.1 10.1 5.5 - - - -
S-O-C ACM18 N T 45.8 39.0 31.1 22.5 15.9 - - - - - -
UntrimmedNets CVPR17 Y T 44.4 37.7 28.2 21.1 13.7 - - - - - -
H&S ICCV17 Y T 36.44 27.84 19.49 12.66 6.84 - - - - - -
LPAT-I3D+TEM arXiv - - - 46.9 37.4 28.0 16.6 9.2 - - 27.6 -
LPAT-I3D arXiv - - - 46.7 37.5 27.9 17.6 9.2 - - 27.6 -
LPAT-U arXiv - - - 39.9 31.5 22.6 14.2 7.9 - - 27.6 -
RefineLoc-I3D arXiv - T - - 40.8 - 23.1 - 5.3 - - - -
RefineLoc-TSN arXiv - T - - 36.1 - 22.6 - 5.8 - - - -

Weakly Supervised Performance on ActivityNet v1.2 dataset.

Detector Pub c 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 avg test info
BaSNet-I3D AAAI20 Y 38.5 - - - - 24.2 - - - 5.6 24.3 - -
TSCN ECCV20 N 37.6 - - - - 23.7 - - - 5.7 23.6 - -
CMCS CVPR19 Y 36.8 - - - - 22.0 - - - 5.6 22.4 - -
3C-Net ICCV19 Y 35.4 - - - - 22.9 - - - 8.5 21.1 - -
TSM ICCV19 N 28.3 26.0 23.6 21.2 18.9 17.0 14.0 11.1 7.5 3.5 - - -
CleanNet ICCV19 N 37.1 33.4 29.9 26.7 23.4 20.3 17.2 13.9 9.2 5.0 21.6 - -
EM-MIL ECCV20 N 37.4 - - - 23.1 - - - 2.0 - 20.3 - -
W-TALC ECCV18 Y 37.0 - - - 14.6 - - - - - 18.0 - -
AutoLoc ECCV18 Y 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3 16.0 - -
RefineLoc-I3D arXiv - 38.7 - - - - 22.6 - - - 5.5 23.2 - -
RefineLoc-TSN arXiv - 38.8 - - - - 22.2 - - - 5.3 23.2 - -
LPAT arXiv - 37.6 34.6 31.6 28.7 25.6 22.6 19.6 15.3 10.9 4.9 23.1 - -
WSTAL arXiv - 35.2 - - - 16.3 - - - - - - - -

Weakly Supervised Performance on ActivityNet v1.3 dataset.

Detector Pub c 0.5 0.75 0.95 avg
BaSNet-I3D AAAI20 Y 34.5 22.5 4.9 22.2
TSCN ECCV20 N 35.3 21.4 5.3 21.7
WSBM ICCV19 N 36.4 19.2 2.9 -
ASSG ACM 19 N 32.3 20.1 4.0 -
TSM ICCV19 N 30.0 19.0 4.5 -
CMCS CVPR19 Y 34.0 20.9 5.7 21.2
STARNet AAAI19 N 31.1 18.8 4.7 -
MAAN ICLR19 Y 33.7 21.9 5.5 -
LTSR AAAI19 N 33.1 18.7 3.32 21.78
STPN CVPR18 I 29.3 16.9 2.6 -
CPMN ACCV18 N 39.29 24.09 6.71 24.42
S-O-C ACM18 N 27.3 14.7 2.9 15.6

Weakly Supervised Temporal Action Localization

  • EM-MILZhekun Luo, Devin Guillory, Baifeng Shi, Wei Ke, Fang Wan, Trevor Darrell, Huijuan Xu.
    "Weakly-Supervised Action Localization with Expectation-Maximization Multi-Instance Learning" ECCV 2020. [paper]
  • A2CL-PT: Kyle Min, Jason J. Corso.
    "Adversarial Background-Aware Loss for Weakly-supervised Temporal Activity Localization." ECCV 2020. [paper] [code]
  • ACL: Guoqiang Gong, Xinghan Wang, Yadong Mu, Qi Tian.
    "Learning Temporal Co-Attention Models for Unsupervised Video Action Localization." CVPR 2020, oral. [paper]
  • WSTALAshraful Islam, Richard J. Radke.
    "Weakly Supervised Temporal Action Localization Using Deep Metric Learning" WACV 2020. [paper] [code]
  • ActoinBytes: Mihir Jain1, Amir Ghodrati, Cees G. M. Snoek.
    "ActionBytes: Learning from Trimmed Videos to Localize Actions." CVPR 2020. [paper]
  • DGAM: Baifeng Shi, Qi Dai, Yadong Mu, Jingdong Wang.
    "Weakly-Supervised Action Localization by Generative Attention Modeling." CVPR 2020. [paper] [code]
  • TSCN: Zhai, Yuanhao and Wang, Le and Tang, Wei and Zhang, Qilin and Yuan, Junsong and Hua, Gang.
    "Two-Stream Consensus Network for Weakly-Supervised Temporal Action Localization: Supplementary Material." ECCV 2020. [paper]
  • BaSNet: Pilhyeon Lee, Youngjung Uh, Hyeran Byun.
    "Background Suppression Networks for Weakly-supervised Temporal Action Localization." AAAI 2020. [paper] [code]
  • 3C-Net: Sanath Narayan, Hisham Cholakkal, Fahad Shabaz Khan, Ling Shao.
    "3C-Net : Category Count and Center Loss for Weakly-Supervised Action Localization." ICCV 2019. [paper] [code]
  • CMCS: Daochang Liu, Tingting Jiang, Yizhou Wang.
    "Completeness Modeling and Context Separation for Weakly Supervised Temporal Action Localization." CVPR 2019. [paper] [code]
  • ASSG: Chengwei Zhang, Yunlu Xu, Zhanzhan Cheng, Yi Niu, Shiliang, Pu Fei Wu, Futai Zou.
    "Adversarial Seeded Sequence Growing for Weakly-Supervised Temporal Action Localization" ACM MM 2019. [paper]
  • **AutoLoc:**Zheng Shou, Hang Gao, Lei Zhang, KazuyukiMiyazawa, Shih-Fu Chang.
    "AutoLoc Weakly-supervised Temporal Action Localization in Untrimmed Videos"ECCV 2018. [paper] [code]
  • **CPMN:**Haisheng Su, Xu Zhao, Tianwei Lin.
    "Cascaded Pyramid Mining Network for Weakly Supervised Temporal Action Localization"ACCV 2018. [paper]
  • **H&S:**Krishna Kumar Singh, Yong Jae Lee.
    "Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-supervised Object and Action Localization"ICCV 2017. [paper] [code]
  • **LTSR:**Xiao-Yu Zhang, Haichao Shi, Changsheng Li, Kai Zheng, Xiaobin Zhu, Lixin Duan.
    "Learning Transferable Self-Attentive Representations for Action Recognition in Untrimmed Videos with Weak Supervision"AAAI 2019. [paper]
  • **WSGN:**Basura Fernando, Cheston Tan Yin Chet.
    "Weakly Supervised Gaussian Networks for Action Detection" WACV(2020)
  • **MAAN:**Yuan Yuan, Yueming Lyu, Xi Shen, Ivor W. Tsang, Dit-Yan Yeung.
    "MARGINALIZED AVERAGE ATTENTIONAL NETWORK FOR WEAKLY-SUPERVISED LEARNING"ICLR 2019. [paper] [code]
  • **S-O-C:**Jia-Xing Zhong, Nannan Li, Weijie Kong, Tao Zhang, Thomas H. Li, Ge Li.
    " Step-by-step Erasion, One-by-one Collection: A Weakly Supervised Temporal Action Detector"ACM MM 2018. [paper]
  • **STARNet:**Yunlu Xu, Chengwei Zhang, Zhanzhan Cheng, Jianwen Xie, Yi Niu, Shiliang Pu, Fei Wu.
    "Segregated Temporal Assembly Recurrent Networks for Weakly Supervised Multiple Action Detection"AAAI 2019. [paper]
  • **TSM:**Tan Yu, Zhou Ren, Yuncheng Li, Enxu Yan, Ning Xu, Junsong Yuan.
    "Temporal Structure Mining for Weakly Supervised Action Detection"ICCV(2019). [paper]
  • **UntrimmedNets:**Limin Wang, Yuanjun Xiong, Dahua Lin, Luc Van Gool.
    "UntrimmedNets for Weakly Supervised Action Recognition and Detection"CVPR 2017. [paper] [code]
  • **WSBM:**Phuc Xuan Nguyen, Deva Ramanan, Charless C. Fowlkes.
    "Weakly-supervised Action Localization with Background Modeling"ICCV 2019. [paper]
  • **CleanNet:**Ziyi Liu, Le Wang1∗ Qilin Zhang, Zhanning Gao, Zhenxing Niu, Nanning Zheng, Gang Hua.
    "Weakly Supervised Temporal Action Localization through Contrast based Evaluation Networks"ICCV 2019. [paper]
  • STPNPhuc Nguyen, Ting Liu, Gautam Prasad, Bohyung Han.
    "Weakly Supervised Action Localization by Sparse Temporal Pooling Network" CVPR 2018. [paper] [code]
  • W-TALCSujoy Paul, Sourya Roy, Amit K Roy-Chowdhury.
    "W-TALC: Weakly-supervised Temporal Activity Localization and Classification" ECCV 2018. [paper] [code]
  • LPATXudong, Lin Zheng, Shou Shih-Fu Chang.
    "LPAT: Learning to Predict Adaptive Threshold for Weakly-supervised Temporal Action Localization" arXiv 2019. [paper]
  • **RefineLoc:**Humam Alwassel1, Alejandro Pardo1, Fabian Caba Heilbron, Ali Thabet1 Bernard Ghanem1.
    "RefineLoc: Iterative Refinement for Weakly-Supervised Action Localization"Arxiv(2019) [paper] [paper]

Expecting for paper

  • lvr: Xingyu Liu, Joon-Young Lee, Hailin Jin.
    "Learning Video Representations from Correspondence Proposals." CVPR 2019 oral.

Dataset

  • THUMOS'14: Yu-Gang Jiang, Jingen Liu, Amir R. Zamir, George Toderici.
    "THUMOS Challenge 2014" [project]

  • Activity: Bernard Ghanem, Juan Carlos Niebles, Cees Snoek, Fabian Caba Heilbron, Humam Alwassel, Victor Escorcia.
    "A Large-Scale Video Benchmark for Human Activity Understanding" [project]

  • THUMOS'15: Alexander Gorban, Haroon Idrees, Yu-Gang Jiang, Amir R. Zamir.
    "THUMOS Challenge 2015" [project]

  • COIN: Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, Jie Zhou.
    "COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis." CVPR 2019. [paper] [project]