Prepare dataset
Training dataset mount to /code/train. Public test 2 dataset mount to /code/public_test_2. Public test 1 dataset mount to /code/public_test
Split videos to 2 folders fake and real
python split_data.py
Extract all even frames from videos
python extract_frames.py --config extract_frames_train_config.json
python extract_frames.py --config extract_frames_pub1_config.json
python extract_frames.py --config extract_frames_pub2_config.json
Split k-fold
python split_kfold.py
Detect face
cd /code/yolov7-face-main
python detect.py
Training
CUDA_VISIBLE_DEVICES=0 nohup python code/train_teacher.py --exp exp_39 > nohup_exp_39.out &
CUDA_VISIBLE_DEVICES=0 nohup python code/train_teacher.py --exp exp_40 > nohup_exp_40.out &
CUDA_VISIBLE_DEVICES=0 nohup python code/train_teacher.py --exp exp_43 > nohup_exp_43.out &
CUDA_VISIBLE_DEVICES=0 nohup python code/train_teacher.py --exp exp_49 > nohup_exp_49.out &
Experiment result
Exp | Pub 2 | Private |
---|---|---|
Ensemble exp_39, 40, 43, 49, B5, 3TTA, 11 frames | 0.00855 | |
Ensemble exp_39, 40, 43, 49, 2TTA, 8 frames | 0.019 | |
Ensemble exp_39, 40, 43, 49, 2TTA, 8 frames, fp16 | 0.02137 | 0.06373 |
Ensemble exp_40, 43, 49, B5, 2TTA, 11 frames, fp32 | ... | 0.05882 |
Exp_39, 3TTA, 7 frames, best eer | 0.02778 | |
Exp_40, 3TTA, 11 frames, best acc | 0.02991 | |
Exp_40, 3TTA, 11 frames, best eer | 0.02381 | |
Exp_43, 3TTA, 11 frames, best acc | 0.02381 | |
Exp_49, 3TTA, 11 frames, best acc | 0.02778 | |
B5, 3TTA, 11 frames, best acc | 0.02564 |
Submission
Gen submission csv file
python code/submission/submission.py
Ensemble
python code/submission/ensemble_multimodel.py
Visualize grad-cam
python code/visualize_grad_cam.py