/skimpy

skimpy is a light weight tool that provides summary statistics about variables in data frames within the console.

Primary LanguagePythonOtherNOASSERTION

Skimpy

A light weight tool for creating summary statistics from dataframes.

png

PyPI Status Python Version License Read the documentation at https://aeturrell.github.io/skimpy/ Tests Codecov Downloads pre-commit Black Google Colab

Linux macOS Windows

skimpy is a light weight tool that provides summary statistics about variables in data frames within the console or your interactive Python window. Think of it as a super-charged version of df.describe().

You can find the documentation here.

Quickstart

skim a dataframe and produce summary statistics within the console using:

from skimpy import skim

skim(df)

where df is a dataframe.

If you need to a dataset to try skimpy out on, you can use the built-in test dataframe:

#| output: asis
from skimpy import skim, generate_test_data

df = generate_test_data()
skim(df)
╭───────────────────────────────────── skimpy summary ──────────────────────────────────────╮
│          Data Summary                Data Types               Categories                  │
│ ┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓ ┏━━━━━━━━━━━━━┳━━━━━━━┓ ┏━━━━━━━━━━━━━━━━━━━━━━━┓          │
│ ┃ dataframe          Values ┃ ┃ Column Type  Count ┃ ┃ Categorical Variables ┃          │
│ ┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩ ┡━━━━━━━━━━━━━╇━━━━━━━┩ ┡━━━━━━━━━━━━━━━━━━━━━━━┩          │
│ │ Number of rows    │ 1000   │ │ float64     │ 3     │ │ class                 │          │
│ │ Number of columns │ 10     │ │ category    │ 2     │ │ location              │          │
│ └───────────────────┴────────┘ │ datetime64  │ 2     │ └───────────────────────┘          │
│                                │ int64       │ 1     │                                    │
│                                │ bool        │ 1     │                                    │
│                                │ string      │ 1     │                                    │
│                                └─────────────┴───────┘                                    │
│                                          number                                           │
│ ┏━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━┳━━━━━━┳━━━━━━━━┓  │
│ ┃ column_n           complet                                                  ┃  │
│ ┃ ame       missing  e %      mean   sd    p0       p25    p75   p100  hist   ┃  │
│ ┡━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━╇━━━━━━━╇━━━━━━╇━━━━━━━━━╇━━━━━━━╇━━━━━━╇━━━━━━╇━━━━━━━━┩  │
│ │ length        0      1  0.50.361.6e-06 0.130.86   1█▃▃▃▄█ │  │
│ │ width         0      1    2 1.9 0.0021  0.6   3  14 █▃▁   │  │
│ │ depth         0      1   10 3.2      2    8  12  20▁▄█▆▃▁ │  │
│ │ rnd         120   0.88-0.02   1   -2.8-0.740.66 3.7▁▄█▅▁  │  │
│ └──────────┴─────────┴─────────┴───────┴──────┴─────────┴───────┴──────┴──────┴────────┘  │
│                                         category                                          │
│ ┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓  │
│ ┃ column_name          missing        complete %          ordered       unique     ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩  │
│ │ class                          0                 1False                2 │  │
│ │ location                       1                 1False                5 │  │
│ └─────────────────────┴───────────────┴────────────────────┴──────────────┴────────────┘  │
│                                         datetime                                          │
│ ┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━┓  │
│ ┃ column_name      missing    complete %    first         last          frequency ┃  │
│ ┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━┩  │
│ │ date                   0           1 2018-01-31  2101-04-30 M         │  │
│ │ date_no_freq           3           1 1992-01-05  2023-03-04 None      │  │
│ └─────────────────┴───────────┴──────────────┴──────────────┴──────────────┴───────────┘  │
│                                          string                                           │
│ ┏━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓  │
│ ┃ column_name       missing     complete %      words per row       total words    ┃  │
│ ┡━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩  │
│ │ text                     6          0.99               5.8          5800 │  │
│ └──────────────────┴────────────┴────────────────┴────────────────────┴────────────────┘  │
│                                           bool                                            │
│ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓  │
│ ┃ column_name                  true         true rate               hist            ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩  │
│ │ booly_col                          520                  0.52    █    █      │  │
│ └─────────────────────────────┴─────────────┴────────────────────────┴─────────────────┘  │
╰─────────────────────────────────────────── End ───────────────────────────────────────────╯

It is recommended that you set your datatypes before using skimpy (for example converting any text columns to pandas string datatype), as this will produce richer statistical summaries. However, the skim function will try and guess what the datatypes of your columns are.

skimpy also comes with a clean_columns function as a convenience. This slugifies column names. For example,

import pandas as pd
from rich import print
from skimpy import clean_columns

columns = [
    "bs lncs;n edbn ",
    "Nín hǎo. Wǒ shì zhōng guó rén",
    "___This is a test___",
    "ÜBER Über German Umlaut",
]
messy_df = pd.DataFrame(columns=columns, index=[0], data=[range(len(columns))])
print("Column names:")
print(list(messy_df.columns))
Column names:
[
    'bs lncs;n edbn ',
    'Nín hǎo. Wǒ shì zhōng guó rén',
    '___This is a test___',
    'ÜBER Über German Umlaut'
]

Now let's clean these—by default what we get back is in snake case:

clean_df = clean_columns(messy_df)
print(list(clean_df.columns))
4 column names have been cleaned
[
    'bs_lncs_n_edbn',
    'nin_hao_wo_shi_zhong_guo_ren',
    'this_is_a_test',
    'uber_uber_german_umlaut'
]

Other naming conventions are available, for example camel case:

clean_df = clean_columns(messy_df, case="camel")
print(list(clean_df.columns))
4 column names have been cleaned
['bsLncsNEdbn', 'ninHaoWoShiZhongGuoRen', 'thisIsATest', 'uberUberGermanUmlaut']

Requirements

You can find a full list of requirements in the pyproject.toml file. The main requirements are:

python >=3.7.1,<4.0.0
click 7.1.2
rich >=10.9,<12.0
pandas ^1.3.2
Pygments ^2.10.0
typeguard ^2.12.1
jupyter ^1.0.0
ipykernel ^6.7.0

You can try this package out right now in your browser using this Google Colab notebook (requires a Google account). Note that the Google Colab notebook uses the latest package released on PyPI (rather than the development release).

Installation

You can install the latest release of skimpy via pip from PyPI:

$ pip install skimpy

To install the development version from git, use:

$ pip install git+https://github.com/aeturrell/skimpy.git

For development, see the Contributor Guide.

Usage

This package is mostly designed to be used within an interactive console session or Jupyter notebook

from skimpy import skim

skim(df)

However, you can also use it on the command line:

$ skimpy file.csv

Features

  • Support for boolean, numeric, datetime, string, and category datatypes
  • Command line interface in addition to interactive console functionality
  • Light weight, with results printed to terminal using the rich package.
  • Support for different colours for different types of output
  • Rounds numerical output to 2 significant figures

skim accepts keyword arguments that change the colour of the top level column headers. For example, to change the colour to magenta, it's

skim(df, header_style="italic magenta")
╭───────────────────────────────────── skimpy summary ──────────────────────────────────────╮
│          Data Summary                Data Types               Categories                  │
│ ┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓ ┏━━━━━━━━━━━━━┳━━━━━━━┓ ┏━━━━━━━━━━━━━━━━━━━━━━━┓          │
│ ┃ dataframe          Values ┃ ┃ Column Type  Count ┃ ┃ Categorical Variables ┃          │
│ ┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩ ┡━━━━━━━━━━━━━╇━━━━━━━┩ ┡━━━━━━━━━━━━━━━━━━━━━━━┩          │
│ │ Number of rows    │ 1000   │ │ float64     │ 3     │ │ class                 │          │
│ │ Number of columns │ 10     │ │ category    │ 2     │ │ location              │          │
│ └───────────────────┴────────┘ │ datetime64  │ 2     │ └───────────────────────┘          │
│                                │ int64       │ 1     │                                    │
│                                │ bool        │ 1     │                                    │
│                                │ string      │ 1     │                                    │
│                                └─────────────┴───────┘                                    │
│                                          number                                           │
│ ┏━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━┳━━━━━━┳━━━━━━━━┓  │
│ ┃ column_n           complet                                                  ┃  │
│ ┃ ame       missing  e %      mean   sd    p0       p25    p75   p100  hist   ┃  │
│ ┡━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━╇━━━━━━━╇━━━━━━╇━━━━━━━━━╇━━━━━━━╇━━━━━━╇━━━━━━╇━━━━━━━━┩  │
│ │ length        0      1  0.50.361.6e-06 0.130.86   1█▃▃▃▄█ │  │
│ │ width         0      1    2 1.9 0.0021  0.6   3  14 █▃▁   │  │
│ │ depth         0      1   10 3.2      2    8  12  20▁▄█▆▃▁ │  │
│ │ rnd         120   0.88-0.02   1   -2.8-0.740.66 3.7▁▄█▅▁  │  │
│ └──────────┴─────────┴─────────┴───────┴──────┴─────────┴───────┴──────┴──────┴────────┘  │
│                                         category                                          │
│ ┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓  │
│ ┃ column_name          missing        complete %          ordered       unique     ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩  │
│ │ class                          0                 1False                2 │  │
│ │ location                       1                 1False                5 │  │
│ └─────────────────────┴───────────────┴────────────────────┴──────────────┴────────────┘  │
│                                         datetime                                          │
│ ┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━┓  │
│ ┃ column_name      missing    complete %    first         last          frequency ┃  │
│ ┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━┩  │
│ │ date                   0           1 2018-01-31  2101-04-30 M         │  │
│ │ date_no_freq           3           1 1992-01-05  2023-03-04 None      │  │
│ └─────────────────┴───────────┴──────────────┴──────────────┴──────────────┴───────────┘  │
│                                          string                                           │
│ ┏━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓  │
│ ┃ column_name       missing     complete %      words per row       total words    ┃  │
│ ┡━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩  │
│ │ text                     6          0.99               5.8          5800 │  │
│ └──────────────────┴────────────┴────────────────┴────────────────────┴────────────────┘  │
│                                           bool                                            │
│ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓  │
│ ┃ column_name                  true         true rate               hist            ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩  │
│ │ booly_col                          520                  0.52    █    █      │  │
│ └─────────────────────────────┴─────────────┴────────────────────────┴─────────────────┘  │
╰─────────────────────────────────────────── End ───────────────────────────────────────────╯

Contributing

Contributions are very welcome. To learn more, see the Contributor Guide.

Note that you will need Quarto and Make installed to build the docs. You can preview the docs using poetry run quarto preview --execute. You can build them with make.

License

Distributed under the terms of the MIT license, skimpy is free and open source software. You can find the license here

Issues

If you encounter any problems, please file an issue along with a detailed description.

Credits

This project was generated from @cjolowicz's Hypermodern Python Cookiecutter template.

skimpy was inspired by the R package skimr and by exploratory Python packages including pandas_profiling and dataprep, from which the clean_columns function comes.

The package is built with poetry, while the documentation is built with Quarto. Tests are run with nox.