RKNN Model Zoo
is developed based on the RKNPU SDK toolchain and provides deployment examples for current mainstream algorithms. Include the process of exporting the RKNN model
and using Python API
and CAPI
to infer the RKNN model.
- Support
RK3562
,RK3566
,RK3568
,RK3588
platforms. (RV1103
,RV1106
platforms supportmobilenet
,yolov5
) RK1808
,RK3399PRO
,RV1109
,RV1126
will be supported in next version. (Foryolov5/6/7/8
,yolox
,ppyoloe
demos, they are available inv1.5.0
, please switch tov1.5.0
to get them)
RKNN Model Zoo
relies on RKNN-Toolkit2
for model conversion. The Android compilation tool chain is required when compiling the Android demo, and the Linux compilation tool chain is required when compiling the Linux demo. For the installation of these dependencies, please refer to the Quick Start
documentation at https://github.com/airockchip/rknn-toolkit2/tree/master/doc.
- Please note that the Android compilation tool chain recommends using
version r18 or r19
. Using other versions may encounter the problem of Cdemo compilation failure.
In addition to exporting the model from the corresponding respository, the models file are available on https://console.zbox.filez.com/l/8ufwtG (key: rknn).
demo | model_name | inputs_shape | dtype | RK3566 RK3568 |
RK3562 | RK3588 @single_core |
---|---|---|---|---|---|---|
mobilenet | mobilenetv2-12 | [1, 3, 224, 224] | INT8 | 197.4 | 266.8 | 433.0 |
resnet | resnet50-v2-7 | [1, 3, 224, 224] | INT8 | 40.6 | 54.5 | 108.6 |
yolov5 | yolov5s_relu | [1, 3, 640, 640] | INT8 | 26.7 | 31.6 | 63.3 |
yolov5n | [1, 3, 640, 640] | INT8 | 41.6 | 43.8 | 68.1 | |
yolov5s | [1, 3, 640, 640] | INT8 | 19.9 | 22.7 | 42.5 | |
yolov5m | [1, 3, 640, 640] | INT8 | 8.7 | 10.6 | 19.3 | |
yolov6 | yolov6n | [1, 3, 640, 640] | INT8 | 50.2 | 51.5 | 93.8 |
yolov6s | [1, 3, 640, 640] | INT8 | 15.2 | 16.8 | 34.1 | |
yolov6m | [1, 3, 640, 640] | INT8 | 7.5 | 8.0 | 17.6 | |
yolov7 | yolov7-tiny | [1, 3, 640, 640] | INT8 | 29.9 | 34.9 | 69.7 |
yolov7 | [1, 3, 640, 640] | INT8 | 4.7 | 5.5 | 10.9 | |
yolov8 | yolov8n | [1, 3, 640, 640] | INT8 | 35.7 | 38.5 | 59.6 |
yolov8s | [1, 3, 640, 640] | INT8 | 15.4 | 17.1 | 32.8 | |
yolov8m | [1, 3, 640, 640] | INT8 | 6.6 | 7.5 | 14.8 | |
yolox | yolox_s | [1, 3, 640, 640] | INT8 | 15.5 | 17.7 | 32.9 |
yolox_m | [1, 3, 640, 640] | INT8 | 6.7 | 8.1 | 14.8 | |
ppyoloe | ppyoloe_s | [1, 3, 640, 640] | INT8 | 17.5 | 19.7 | 32.9 |
ppyoloe_m | [1, 3, 640, 640] | INT8 | 7.9 | 8.3 | 16.2 | |
deeplabv3 | deeplab-v3-plus-mobilenet-v2 | [1, 513, 513, 1] | INT8 | 10.7 | 20.7 | 34.4 |
yolov5_seg | yolov5n-seg | [1, 3, 640, 640] | INT8 | 33.9 | 36.3 | 58.0 |
yolov5s-seg | [1, 3, 640, 640] | INT8 | 15.3 | 17.2 | 32.6 | |
yolov5m-seg | [1, 3, 640, 640] | INT8 | 6.8 | 8.1 | 15.2 | |
yolov8_seg | yolov8n-seg | [1, 3, 640, 640] | INT8 | 29.1 | 30.7 | 49.1 |
yolov8s-seg | [1, 3, 640, 640] | INT8 | 11.8 | 11.3 | 25.4 | |
yolov8m-seg | [1, 3, 640, 640] | INT8 | 5.2 | 6.1 | 11.6 | |
ppseg | pp_liteseg_cityscapes | [1, 3, 512, 512] | FP16 | 2.6 | 4.6 | 13.0 |
RetinaFace | RetinaFace_mobile320 | [1, 3, 320, 320] | INT8 | 142.5 | 279.5 | 234.7 |
RetinaFace_resnet50_320 | [1, 3, 320, 320] | INT8 | 18.5 | 26.0 | 48.8 | |
LPRNet | lprnet | [1, 3, 24, 94] | INT8 | 58.2 | 119.7 | 204.4 |
PPOCR-Det | ppocrv4_det | [1, 3, 480, 480] | INT8 | 24.4 | 27.5 | 43.0 |
PPOCR-Rec | ppocrv4_rec | [1, 3, 48, 320] | FP16 | 20.0 | 45.1 | 35.7 |
lite_transformer | lite-transformer-encoder-16 | embedding-256, token-16 | FP16 | 130.8 | 656.7 | 261.5 |
lite-transformer-decoder-16 | embedding-256, token-16 | FP16 | 114.3 | 151.3 | 164.0 |
- This performance data are collected based on the maximum NPU frequency of each platform.
- This performance data calculate the time-consuming of model inference. Does not include the time-consuming of pre-processing and post-processing.
For Linux develop board:
./build-linux.sh -t <target> -a <arch> -d <build_demo_name> [-b <build_type>] [-m]
-t : target (rk356x/rk3588/rv1106)
-a : arch (aarch64/armhf)
-d : demo name
-b : build_type(Debug/Release)
-m : enable address sanitizer, build_type need set to Debug
# Here is an example for compiling yolov5 demo for 64-bit Linux RK3566.
./build-linux.sh -t rk356x -a aarch64 -d yolov5
For Android develop board:
# For Android develop boards, it's require to set path for Android NDK compilation tool path according to the user environment
export ANDROID_NDK_PATH=~/opts/ndk/android-ndk-r18b
./build-android.sh -t <target> -a <arch> -d <build_demo_name> [-b <build_type>] [-m]
-t : target (rk356x/rk3588)
-a : arch (arm64-v8a/armeabi-v7a)
-d : demo name
-b : build_type (Debug/Release)
-m : enable address sanitizer, build_type need set to Debug
# Here is an example for compiling yolov5 demo for 64-bit Android RK3566.
./build-android.sh -t rk356x -a arm64-v8a -d yolov5
Version | Description |
---|---|
1.6.0 | New demo release, including object detection, image segmentation, OCR, car plate detection&recognition etc. Full support for RK3566 , RK3568 , RK3588 , RK3562 platforms.Limited support for RV1103 , RV1106 platforms. |
1.5.0 | Yolo detection demo release. |
All demos in RKNN Model Zoo
are verified based on the latest RKNPU SDK. If using a lower version for verification, the inference performance and inference results may be wrong.
Version | RKNPU2 SDK | RKNPU1 SDK |
---|---|---|
1.6.0 | >=1.6.0 | - Coming soon |
1.5.0 | >=1.5.0 | >=1.7.3 |
- RKNPU2 SDK: https://github.com/airockchip/rknn-toolkit2
- RKNPU1 SDK: https://github.com/airockchip/rknn-toolkit