# Long Project LP1: Integer Arithmetic with Arbitrarily Large Numbers # Authors: * Rahul Nalawade (rsn170330) * Dhwani Raval (dsr170230) * Varun Parashar (vxp171830) * Arpita Agrawal (aua170030) * Simran Rawlani (sxr174130) * Yash Madane (yxm172130) # End Date: * Sunday, September 23, 2018 __________________________________________________________________________________ # Project Description In this project, develop a program that implements arithmetic with large integers, of arbitrary size. Code base: Java library: Lists, stacks, queues, sets, maps, hashing, trees. Do not use BigInteger, BigNum, or other libraries that implement arbitrary precision arithmetic. Your task is to implement the class Num that stores and performs arithmetic operations on arbitrarily large integers. You must use the following data structure for representing Num: Array of long integers, where the digits are in the chosen base. In particular, do not use strings to represent the numbers. Each entry of the list stores exactly one long integer. The base is defined to be 10 in the starter code, but you may modify it. For base = 10, the number 30128 is represented by the list: {8,2,1,0,3}. For base = 100, the number 30128 is represented by the list: {28,1,3}. Implement all methods in the starter code. Some of them are - Num(String s): Constructor for Num class; takes a string s as parameter, with a number in decimal, and creates the Num object representing that number in the chosen base. Note that, the string s is in base 10, even if the chosen base is not 10. The string s can have arbitrary length. Num(long x): Constructor for Num class. String toString(): convert the Num class object into its equivalent string (in decimal). There should be no leading zeroes in the string. Num add(Num a, Num b): sum of two numbers a+b stored as Num. Num subtract(Num a, Num b): a-b Num product(Num a, Num b): product of two numbers a*b. Num power(Num x, long n): given an Num x, and n, returns the Num corresponding to x^n (x to the power n). Assume that n is a nonnegative number. Use divide-and-conquer to implement power using O(log n) calls to product and add. printList(): Print the base + ":" + elements of the list, separated by spaces. Num divide(Num a, Num b): Integer division a/b. Use divide-and-conquer or division algorithm. Return null if b = 0. Num mod(Num a, Num b): remainder you get when a is divided by b (a % b). Assume that a is non-negative, and b > 0. Return null if b = 0. Num squareRoot(Num a): return the square root of a (truncated). Use binary search. Assume that a is non-negative. Return null if b < 0. __________________________________________________________________________________ # Results: For Base = 10^9 +--------------------------------------------------------------------------------+ | Test Case | Time (mSec) | Memory (used/avail) | |--------------------------------------------------------------------------------| | $ java -Xss512m -Xms2g rsn170330.TestLP1 0 | 4 | 10 MB / 1963 MB | |--------------------------------------------------------------------------------| | $ java -Xss512m -Xms2g rsn170330.TestLP1 1 | 279 | 321 MB / 1963 MB | |--------------------------------------------------------------------------------| | $ java -Xss512m -Xms2g rsn170330.TestLP1 2 | 5 | 10 MB / 1963 MB | |--------------------------------------------------------------------------------| | $ java -Xss512m -Xms2g rsn170330.TestLP1 3 | 2 | 10 MB / 1963 MB | |--------------------------------------------------------------------------------| | $ java -Xss512m -Xms2g rsn170330.TestLP1 4 | 2078 | 505 MB / 2047 MB | |--------------------------------------------------------------------------------| | $ java -Xss512m -Xms2g rsn170330.TestLP1 5 | 9511 | 39 MB / 2047 MB | |--------------------------------------------------------------------------------| | $ java -Xss512m -Xms2g rsn170330.TestLP1 6 | 12357 | 33 MB / 2047 MB | +--------------------------------------------------------------------------------+ +--------------------------------------------------------------------------------+ | Test | Base = 10^6 | Base = 10^4 | | Case |-----------------------------------------------------------------------| | | Time (mSec) | Memory (used/avail) | Time (mSec) | Memory (used/avail) | |--------------------------------------------------------------------------------| | 0 | 3 | 10 MB / 1963 MB | 3 | 10 MB / 1963 MB | |--------------------------------------------------------------------------------| | 1 | 463 | 41 MB / 1963 MB | 649 | 407 MB / 1963 MB | |--------------------------------------------------------------------------------| | 2 | 5 | 20 MB / 1963 MB | 6 | 10 MB / 1963 MB | |--------------------------------------------------------------------------------| | 3 | 2 | 10 MB / 1963 MB | 2 | 10 MB / 1963 MB | |--------------------------------------------------------------------------------| | 4 | 3108 | 231 MB / 2047 MB | 4625 | 177 MB / 2047 MB | |--------------------------------------------------------------------------------| | 5 | 18354 | 589 MB / 2047 MB | 33283 | 424 MB / 2047 MB | |--------------------------------------------------------------------------------| | 6 | 23450 | 94 MB / 2045 MB | 39672 | 231 MB / 2047 MB | +--------------------------------------------------------------------------------+ NOTE: - Time and Memory might change, as you run the test the program on a different system, but they could be comparable to the above values. Existing Processor: Intel® Core™ i5-8250U CPU @ 1.60GHz × 8 Memory: 7.5 GiB __________________________________________________________________________________ # How to Run: 1. Extract the rsn170330.zip 2. Compile: $javac rsn170330/*.java 3. Run: $java -Xss512m -Xms2g rsn170330.TestLP1 <value> where value can be an Integer = {0, 1, 2, ..., 6} __________________________________________________________________________________
rahul1947/LP1-Integer-Arithmetic-with-Arbitrarily-Large-Numbers
Array-based implementation of Calculator of very large integers with the length of the numbers as large as 2,147,483,647 (2^31 - 1), with Postfix and Infix evaluation of Arithmetic Expressions.
JavaMIT