/array-buffed

🧬 Strongly typed schemas for binary data encoding and decoding with Array Buffers.

Primary LanguageTypeScriptGNU General Public License v3.0GPL-3.0

🧬 @rametta/array-buffed

JSR JSR Score

Strongly typed schemas for binary data encoding and decoding.

Do you work with ArrayBuffer?

Do you wish it was easier to work with complex binary data?

Do you love enforcing schema shapes with TypeScript types?

Then this package is for you!

Installation

# bun
bunx jsr add @rametta/array-buffed

# pnpm
pnpm dlx jsr add @rametta/array-buffed

# deno
deno add @rametta/array-buffed

# npm
npx jsr add @rametta/array-buffed

# yarn
yarn dlx jsr add @rametta/array-buffed

Usage

Step 1: Define a schema

import { t } from '@rametta/array-buffed'

const schema = t.tuple("Vector", [
  t.u32("x"),
  t.u32("y"),
  t.u32("z"),
])

Step 2: Encode data using the schema

import { t, encode } from '@rametta/array-buffed'

const buffer = encode(schema, [50, 100, 1])

Step 3: Decode binary data using the schema

import { t, decode } from '@rametta/array-buffed'

const [x,y,z] = decode(schema, buffer)
// x: 50
// y: 100
// z: 1

Creating Schemas

Creating schemas is roughly based on how the data is stored in binary, so we do not use any object types with keys and values - every schema is created by defining tuples, arrays, and primitives like u8, i16, f32, etc.

import { t } from '@rametta/array-buffed'

// labels are optional for primitives, but useful for describing your data
const schema = t.tuple("World", [
  // tuples are fixed length arrays
  t.tuple("world", [t.i32("x"), t.i32("y")]),
  t.tuple("color", [t.u8("r"), t.u8("g"), t.u8("b")])
  // arrays have dynamic lengths and can only be one type, although that type can also be a tuple type
  t.array("heights", t.u16())
  // various primitives
  t.u16("width"),
  t.u16("height"),
  t.u8("depth")
])

Inferring Types from Schemas

Use the Infer helper type for extracting the Typescript type for any defined schema.

import { t, type Infer } from '@rametta/array-buffed'

const schema = t.tuple("My Tuple", [
  t.u8(),
  t.f64("My Float"),
  t.array("My Array", t.i8())
])

type Schema = Infer<typeof schema>
//   Schema = [number, number, Array<number>]

const data: Schema = [101, 3.5, [-4, 7, 9, 100, 74]] // type check compiles - woohoo

All Schemas

Full docs on JSR