NO LONGER MAINTAINED ======================== The same functionality as this library is available in Botan (https://github.com/randombit/botan) starting in 3.0.0 THE OLD README -> =================== FECpp: Erasure codes based on Vandermonde matrices FECpp contains an implementation of an encoder/decoder for an erasure code based on Vandermonde matrices computed over GF(2^8). It is based on fec, by Luigi Rizzo, which is available at http://info.iet.unipi.it/~luigi/fec.html FECpp should be compatible with zfec (http://allmydata.org/trac/zfec), producing bitwise identical results in all cases. Principle of Operation ======================================== The encoded data is computed as y = E x where x is a k-vector with source data, y is an n-vector with the redundant info, and E is an n*k matrix derived from a Vandermonde matrix. The code is systematic, meaning the first k rows of E are the identity matrix. This causes the first k blocks of output to be equal to the input, split into k pieces. At the receiver, any subset y' of k elements from y allows the reconstruction of the whole x by solving the system y' = E' x where E' is made of rows from E corresponding to the received elements. The complexity of matrix inversion is O(k*l^2) where l is the number of elements not in x available at the receiver. This might seem large, but data elements are in fact be packets of large size, so the inversion cost can be amortized over the size of the packet. For practical applications (k and l as large as 30, packet sizes of 1KB) the cost can be neglected. API Usage ======================================== fecpp provides a single class, fec_code, which is declared in the header file fecpp.h fec_code's constructor takes two integers, k and n. The encoder will generate n shares, any k of which will be sufficient to recover the original input. To encode, call fec_code's encode operation with a pointer to a buffer, a length, and a std::function which will be called for each output block: void encode(const byte input[], size_t size, std::function<void (size_t, size_t, const byte[], size_t)> out) const The length of the input must be a multiple of k bytes. The arguments to the callback are, in order, the share identifier, the maximum share that will be generated, and the share contents and length. The buffer that contains the share data may be reused once the callback function returns, so if the data must be retained, make a copy. However in many applications the share will be immediately written to a file or socket, in which case no copy is necessary. Each share will be of equal length, specifically size / k bytes. To decode a set of shares into the original input, call decode: void decode(const std::map<size_t, const byte*>& shares, size_t share_size, std::function<void (size_t, size_t, const byte[], size_t)> out) const The map of shares is a mapping from share identifier (the first parameter to the encoding callback) to the contents of the share. It is essential that the share identifiers and shares are associated properly: otherwise the decoding will fail. As described above, each share is of equal length, which is specified using the share_size parameter. The output callback for decoding has the same interface, and much the same semantics, as for encoding. The second parameter, which sets the maximum number of blocks, will be k instead of n, since there are k original input blocks. Since each block is the same size, you can compute the full size of the output (which will be k, the second parameter, multiplied by the size of each subpart, which is the fourth parameter). For example to reconstruct the input into a file, you could seek back and forth writing each block as it becomes available. For both encoding and decoding, you should not assume that the output blocks will be provided to the callback in order. Currently this is the case for encoding, but not for decoding, and later if multithreaded operations or OpenMP is used to parellize the encoding it is quite likely that shares will be provided out of order. Future Work / Todos / Send Patches ======================================== * Use threads or OpenMP * Investigate loop tiling and other matrix multiplication optimizations * Use a sliding window for the SSE2 multiplication * Add support for NEON, AVX2, AVX-512, ... * Streaming interface * Progressive decoding (is that even possible?) * Allow use of different polynomials