ICRA 2019 SLAM相关Paper List

  1. Deep Learning Session

1.1 E2E-VO/ SLAM

GEN-SLAM: Generative Modeling for Monocular Simultaneous Localization and Mapping(深度学习位姿和深度图)

Keywords: SLAM, Localization, Visual-Based Navigation

Beyond Photometric Loss for Self-Supervised Ego-Motion Estimation(深度学习,自监督的深度和里程计,参考了GeoNet和SfmLearner)

Keywords: SLAM, Visual Learning, Localization

代码: https://github.com/hlzz/DeepMatchVO

Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning(深度学习的VO)

Keywords: Localization, Visual Learning, Deep Learning in Robotics and Automation

GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks(深度学习 基于GAN的无监督深度和VO方法)

Keywords: Deep Learning in Robotics and Automation, Localization, Visual Tracking

Unsupervised Learning of Monocular Depth and Ego-Motion Using Multiple Masks(无监督深度学习的深度图和位姿网络)

Keywords: Deep Learning in Robotics and Automation, SLAM

1.2 E2E Navigation

(AWARD)Variational End-To-End Navigation and Localization(端到端定位导航)

Keywords: Deep Learning in Robotics and Automation, Computer Vision for Transportation, Autonomous Vehicle Navigation

Deep Reinforcement Learning of Navigation in a Complex and Crowded Environment with a Limited Field of View(强化学习机器人视觉导航)

Keywords: Deep Learning in Robotics and Automation, Collision Avoidance, Service Robots

Generalization through Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight(强化学习的无人机自主导航)

Keywords: Deep Learning in Robotics and Automation

代码 https://github.com/gkahn13/GtS

1.3 Feature & VPR

(AWARD)Learning Scene Geometry for Visual Localization in Challenging Conditions (RGB和Depth中找出场景的结构化描述特征用于VPR)

Keywords: Localization, RGB-D Perception, Computer Vision for Other Robotic Applications

Localizing Discriminative Visual Landmarks for Place Recognition(VPR路标的显著性检测)

Keywords: Localization, Visual-Based Navigation, Computer Vision for Automation

Improving Keypoint Matching Using a Landmark-Based Image Representation(深度学习地标区域描述符和特征点匹配)

Keywords: SLAM, Localization

A Comparison of CNN-Based and Hand-Crafted Keypoint Descriptors(传统和深度学习特征描述子的光照和角度变化下的性能分析)

Keywords: SLAM, Visual-Based Navigation, Deep Learning in Robotics and Automation

A Multi-Domain Feature Learning Method for Visual Place Recognition(迁移学习的特征学习用于场景识别)

Keywords: Localization, SLAM, Performance Evaluation and Benchmarking

Night-To-Day Image Translation for Retrieval-Based Localization(图像迁移方法的的位置定位)

Keywords: Localization, Visual Learning, Autonomous Vehicle Navigation

2D3D-MatchNet: Learning to Match Keypoints across 2D Image and 3D Point Cloud(深度学习,2D3D数据下的匹配特征点提取网络) Feng, Mengdan National University of Singapore

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Localization

Look No Deeper: Recognizing Places from Opposing Viewpoints under Varying Scene Appearance Using Single-View Depth Estimation(用深度学习的深度预测来完成反向视角下的VPR)

Keywords: Localization, Deep Learning in Robotics and Automation

Multi-Process Fusion: Visual Place Recognition Using Multiple Image Processing Methods——IRAL(图像上多信息融合做VPR)

Keywords: Localization, Visual-Based Navigation

1.4 Depth & Disparity

(AWARD)Geo-Supervised Visual Depth Prediction(深度图网络)

Keywords: Visual Learning, Sensor Fusion

代码 https://github.com/feixh/GeoSup

FastDepth: Fast Monocular Depth Estimation on Embedded Systems(178fps TX2上的224x224深度图计算方法)

Keywords: Deep Learning in Robotics and Automation, Range Sensing, Computer Vision for Other Robotic Applications

代码 http://fastdepth.mit.edu https://github.com/dwofk/fast-depth

SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Mapping

Depth Completion with Deep Geometry and Context Guidance(稀疏深度图补齐网络)

Keywords: RGB-D Perception, Computer Vision for Other Robotic Applications

Self-Supervised Sparse-To-Dense: Self-Supervised Depth Completion from LiDAR and Monocular Camera(自监督学习的Lidar深度数据补齐)

Keywords: Visual Learning, RGB-D Perception, Sensor Fusion

代码 https://github.com/fangchangma/self-supervised-depth-completion

Self-Supervised Learning for Single View Depth and Surface Normal Estimation(自监督的深度和法向图估计)

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Mapping

Plug-And-Play: Improve Depth Prediction Via Sparse Data Propagation(循环优化深度图)

Keywords: Deep Learning in Robotics and Automation, RGB-D Perception, Computer Vision for Automation

Depth Generation Network: Estimating Real World Depth from Stereo and Depth Images(左右图生成深度图网络)

Keywords: AI-Based Methods, RGB-D Perception, Range Sensing

Anytime Stereo Image Depth Estimation on Mobile Devices(双目深度图匹配计算方法,快速)

Keywords: Deep Learning in Robotics and Automation, Computer Vision for Automation, Computer Vision for Other Robotic Applications

代码 https://github.com/mileyan/AnyNet

UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery(深度学习的双目立体匹配)

Keywords: Marine Robotics, Deep Learning in Robotics and Automation, Computer Vision for Other Robotic Applications

Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations(深度学习语义和深度的分割网络)

Keywords: Visual Learning, Semantic Scene Understanding, SLAM

代码 https://github.com/DrSleep/multi-task-refinenet

DSNet: Joint Learning for Scene Segmentation and Disparity Estimation(深度学习左右图估计语义分割和深度图)

Keywords: Semantic Scene Understanding, Deep Learning in Robotics and Automation, Object Detection, Segmentation and Categorization

SweepNet: Wide-Baseline Omnidirectional Depth Estimation(宽基线,多摄像头的深度估计方法)

Keywords: Omnidirectional Vision, Computer Vision for Automation, Deep Learning in Robotics and Automation

A Supervised Approach to Predicting Noise in Depth Images(预测深度图的噪声区域)

Keywords: RGB-D Perception, Perception for Grasping and Manipulation, Deep Learning in Robotics and Automation

1.5 Point Cloud Segmentation

SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud (深度学习,雷达数据分割路面上的物体)

Keywords: Object Detection, Segmentation and Categorization, Semantic Scene Understanding, AI-Based Methods

https://github.com/BichenWuUCB/SqueezeSeg https://github.com/xuanyuzhou98/SqueezeSegV2

Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds(点云语义分割方法)

Keywords: Semantic Scene Understanding, AI-Based Methods, RGB-D Perception

1.6 Autonomous Vehicle

Learning to Drive from Simulation without Real World Labels(自动驾驶中的学习方法)

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Learning from Demonstration

Learning to Drive in a Day(强化学习的自动驾驶)

Keywords: AI-Based Methods, Deep Learning in Robotics and Automation, Computer Vision for Transportation

Building a Winning Self-Driving Car in Six Months(与Uber 合作的自动驾驶平台)

Keywords: Autonomous Vehicle Navigation, Intelligent Transportation Systems, Computer Vision for Transportation

Multimodal Spatio-Temporal Information in End-To-End Networks for Automotive Steering Prediction (BMW合作的自动驾驶)

Keywords: Autonomous Vehicle Navigation, Deep Learning in Robotics and Automation, Visual Learning

Monocular Semantic Occupancy Grid Mapping with Convolutional Variational Encoder-Decoder Networks——IRAL(单目图生成避障图)

Keywords: Semantic Scene Understanding, Object Detection, Segmentation and Categorization, Computer Vision for Transportation

2.Deep Learning + Traditional SLAM Session

2.1 SLAM

CNN-SVO: Improving the Mapping in Semi-Direct Visual Odometry Using Single-Image Depth Prediction(深度学习,CNN参与深度估计,并且用于SVO)

Keywords: SLAM, Localization, Visual Learning

https://github.com/yan99033/CNN-SVO

Real-Time Monocular Object-Model Aware Sparse SLAM(深度学习,语义物体SLAM)

Keywords: SLAM

Semantic Mapping for View-Invariant Relocalization(物体关联的SLAM,可以对视角变化的重定位鲁棒)

Keywords: Semantic Scene Understanding, Visual-Based Navigation, SLAM

A Unified Framework for Mutual Improvement of SLAM and Semantic Segmentation(语义和SLAM相互促进的方法)

Keywords: SLAM, Object Detection, Segmentation and Categorization, RGB-D Perception

Multimodal Semantic SLAM with Probabilistic Data Association(图优化,地图数据关联)

Keywords: SLAM, Visual-Based Navigation, Localization

Efficient Constellation-Based Map-Merging for Semantic SLAM(数据关联,地图的点的融合和语义slam)

Keywords: SLAM, Localization, Autonomous Vehicle Navigation

Enhancing V-SLAM Keyframe Selection with an Efficient ConvNet for Semantic Analysis(深度学习,根据图像质量和语义信息选择关键帧)

Keywords: Computer Vision for Other Robotic Applications, Semantic Scene Understanding, Deep Learning in Robotics and Automation

https://github.com/Shathe/MiniNet

Pose Graph Optimization for Unsupervised Monocular Visual Odometry(深度学习VO和传统图优化方法结合)

Keywords: Deep Learning in Robotics and Automation, SLAM, Localization

Learning Wheel Odometry and IMU Errors for Localization(里程计和IMU融合定位)

Keywords: Localization, Deep Learning in Robotics and Automation, Autonomous Vehicle Navigation

https://github.com/CAOR-MINES-ParisTech/lwoi

Global Localization with Object-Level Semantics and Topology(3D语义地图的重定位,利用物体的拓扑关系完成数据关联)

Keywords: Localization, Semantic Scene Understanding, Computer Vision for Other Robotic Applications

Robust Object-Based SLAM for High-Speed Autonomous Navigation(基于平面上物体的SLAM)

Keywords: Aerial Systems: Perception and Autonomy, Autonomous Vehicle Navigation, Mapping

2.2 Mapping & 3D Reconstruction

MID-Fusion: Octree-Based Object-Level Multi-Instance Dynamic SLAM (深度学习,语义的三维重建,去除动态物体,跟踪相机和物体的位姿)

Keywords: SLAM, Mapping, RGB-D Perception

Probabilistic Projective Association and Semantic Guided Relocalization for Dense Reconstruction(语义信息促进SLAM建图的工作,SLAM中的跟踪和回环用到了语义的分割结果)

Keywords: SLAM, RGB-D Perception, Object Detection, Segmentation and Categorization

Dense 3D Visual Mapping Via Semantic Simplification(3D重建中的物体分类,用于判断哪些点需要细节,哪些点就只需要简化)

Keywords: Mapping, Semantic Scene Understanding

DeepFusion: Real-Time Dense 3D Reconstruction for Monocular SLAM Using Single-View Depth and Gradient Predictions(深度学习,用CNN预计的depth来完成关键帧深度的估计,从而结合slam完成密集三维重建)

Keywords: SLAM, Deep Learning in Robotics and Automation, Mapping

Sparse2Dense: From Direct Sparse Odometry to Dense 3D Reconstruction—IRAL (深度学习,稀疏到密集的三维重建,CNN估计深度,法向图用于密集重建)

Keywords: SLAM, Mapping, Visual Learning

  1. Traditional SLAM Session

3.1 SLAM——Direct, 2D/3D feature, Lidar SLAM

FMD Stereo SLAM: Fusing MVG and Direct Formulation towards Accurate and Fast Stereo SLAM(中科院,特征点法和直接法结合)

Keywords: SLAM, Localization, Mapping

RESLAM: A Real-Time Robust Edge-Based SLAM System (边缘SLAM)

Keywords: SLAM, Visual-Based Navigation, RGB-D Perception

代码: https://github.com/fabianschenk/RESLAM https://github.com/fabianschenk/REVO

Leveraging Structural Regularity of Atlanta World for Monocular SLAM(Atlanta世界坐标系下的边缘线约束SLAM)

Keywords: SLAM, Localization, Mapping

Illumination Robust Monocular Direct Visual Odometry for Outdoor Environment Mapping(抗光照变化的直接法视觉里程计)

Loosely-Coupled Semi-Direct Monocular SLAM——IRAL(直接法跟踪,特征点法做地图优化和回环)

Keywords: SLAM, Localization, Mapping

代码 https://github.com/sunghoon031/LCSD_SLAM

3D Keypoint Repeatability for Heterogeneous Multi-Robot SLAM(多机器人系统的不同传感器的特征点匹配,3D关键点KPQ-SI和NARF两个特征点比较适合用于Loopclosure和多机器人重定位中)

Keywords: SLAM, Performance Evaluation and Benchmarking, Mapping

Local Descriptor for Robust Place Recognition Using LiDAR Intensity——IRAL (ISHOT点云描述子用于定位)

Keywords: Localization, Field Robots, Autonomous Vehicle Navigation

1-Day Learning, 1-Year Localization: Long-Term LiDAR Localization Using Scan Context Image——IRAL(激光雷达的长期定位方法)

Keywords: Localization, Range Sensing, SLAM

3.2 SLAM——Pose Optimization

On-Line 3D Active Pose-Graph SLAM Based on Key Poses Using Graph Topology and Sub-Maps(位姿优化,子地图)

Keywords: SLAM, Motion and Path Planning

MH-iSAM2: Multi-Hypothesis iSAM Using Bayes Tree and Hypo-Tree(非线性增量优化,解决SLAM歧义)

Keywords: SLAM, Localization, Mapping

Visual SLAM: Why Bundle Adjust?(BA的替代优化方法,解决纯旋转和弱平移下的位姿估计)

Keywords: SLAM

Modeling Perceptual Aliasing in SLAM Via Discrete-Continuous Graphical Models——IRAL (离散连续图模型的优化方法)

Keywords: SLAM, Sensor Fusion, Optimization and Optimal Control

POSEAMM: A Unified Framework for Solving Pose Problems Using an Alternating Minimization Method(使用交替最小化方法解决姿势优化问题的统一框架)

Keywords: Computer Vision for Automation, Omnidirectional Vision, Localization

Visual-Odometric Localization and Mapping for Ground Vehicles Using SE(2)-XYZ Constraints(平面移动机器人的位姿估计约束模型)

Keywords: Localization, SLAM, Sensor Fusion

https://github.com/izhengfan/se2lam

Direct Relative Edge Optimization, a Robust Alternative for Pose Graph Optimization(边缘约束的图优化)

Keywords: SLAM, Mapping, Multi-Robot Systems

A White-Noise-On-Jerk Motion Prior for Continuous-Time Trajectory Estimation on SE(3) (位姿估计方法)

Keywords: SLAM

Low-Latency Visual SLAM with Appearance-Enhanced Local Map Building(一种快速局部地图的策略)

Keywords: SLAM

3.3 SLAM——VIO/ VISLAM

Fast and Robust Initialization for Visual-Inertial SLAM(VINS初始化)

Keywords: SLAM, Mapping, Localization

Visual-Inertial Navigation: A Concise Review

Keywords: Autonomous Vehicle Navigation, Localization, Sensor Fusion

https://github.com/rpng

Tightly-Coupled Aided Inertial Navigation with Point and Plane Features(点面特征的VINS系统)

Keywords: Range Sensing, Sensor Fusion, SLAM

Tightly-Coupled Visual-Inertial Localization and 3D Rigid-Body Target Tracking——IRAL(VINS和跟踪物体紧融合)

Keywords: Localization, Visual Tracking, SLAM

Aided Inertial Navigation: Unified Feature Representations and Observability Analysis(点,线,面多特征融合的VINS系统)

Keywords: Localization, SLAM, Visual-Based Navigation

A Linear-Complexity EKF for Visual-Inertial Navigation with Loop Closures(一种MSCKF的VINS方法,带回环)

Keywords: Localization, SLAM, Mapping

Multi-Camera Visual-Inertial Navigation with Online Intrinsic and Extrinsic Calibration(多相机VINS系统的在线标定相机,IMU内外参数方法)

Keywords: Visual-Based Navigation, Sensor Fusion, Localization

Sensor-Failure-Resilient Multi-IMU Visual-Inertial Navigation(一种多IMU的VINS系统)

Keywords: Localization, SLAM, Failure Detection and Recovery

Efficient 2D-3D Matching for Multi-Camera Visual Localization(多camera imu的重定位)

Keywords: Localization, Computer Vision for Transportation, Omnidirectional Vision

Keyframe-Based Direct Thermal–Inertial Odometry(低质量图像下的VIO方法,基于关键帧的直接法,可以借鉴他借鉴低照度下的vo问题)

Keywords: Localization, Sensor Fusion, Field Robots

Improving the Robustness of Visual-Inertial Extended Kalman Filtering(VINS 系统姿态估计提升方案)

Keywords: Visual-Based Navigation, Aerial Systems: Perception and Autonomy, Robust/Adaptive Control of Robotic Systems

Towards Fully Dense Direct Filter-Based Monocular Visual-Inertial Odometry(密集直接法VINS系统)

Keywords: Sensor Fusion, Visual-Based Navigation, Localization

Experimental Comparison of Visual-Aided Odometry Methods for Rail Vehicles—IRAL (在火车的数据集上实验比对VO、VIO方法)

Keywords: Computer Vision for Transportation, Intelligent Transportation Systems, SLAM

RaD-VIO: Rangefinder-Aided Downward Visual-Inertial Odometry(测距融合VIO)

Keywords: Aerial Systems: Perception and Autonomy, Localization, Performance Evaluation and Benchmarking

3.4 SLAM——Multi-sensor Fusion

Accurate Direct Visual-Laser Odometry with Explicit Occlusion Handling and Plane Detection(激光雷达融合视觉定位,区分平面和非平面的特征点)

Keywords: SLAM, Localization

Robust Pose-Graph SLAM Using Absolute Orientation Sensing(激光雷达+天花板摄像头SLAM)

Keywords: SLAM, Industrial Robots

Tightly Coupled 3D Lidar Inertial Odometry and Mapping(雷达和IMU融合)

Keywords: Computer Vision for Automation, Sensor Fusion, SLAM

IN2LAMA: INertial Lidar Localisation and Mapping(IMU和Lidar融合的SLAM)

Keywords: Mapping, SLAM, Sensor Fusion

ROVO: Robust Omnidirectional Visual Odometry for Wide-Baseline Wide-FOV Camera Systems(多鱼眼SLAM)

Keywords: SLAM, Omnidirectional Vision, Autonomous Vehicle Navigation

3.5 Depth & Mapping & 3D Reconstruction

ScalableFusion: High-Resolution Mesh-Based Real-Time 3D Reconstruction(三维重建)

Keywords: SLAM, Mapping, RGB-D Perception

Surfel-Based Dense RGB-D Reconstruction with Global and Local Consistency(用SFM计算全局的关键帧位姿,同时用slam方法计算局部相邻帧的位姿,然后用FGO factor graph optimization方法将全局和局部信息融合计算出密集三维重建)

Keywords: SLAM, Localization, Mapping

Real-Time Scalable Dense Surfel Mapping

Keywords: Mapping, Sensor Fusion, Aerial Systems: Perception and Autonomy

代码 https://github.com/HKUST-Aerial-Robotics/DenseSurfelMapping

Real-Time Dense Mapping for Self-Driving Vehicles Using Fisheye Cameras(鱼眼相机的密集三维重建)

Keywords: Mapping, Computer Vision for Transportation, Omnidirectional Vision

https://zhpcui.github.io/projects/arxiv18_densemapping/

Real Time Dense Depth Estimation by Fusing Stereo with Sparse Depth Measurements(用TOF辅助双目密集匹配算法)

Keywords: Range Sensing, Aerial Systems: Perception and Autonomy

Dense Surface Reconstruction from Monocular Vision and LiDAR(雷达和视觉融合三维重建)

Keywords: Mapping, SLAM, Range Sensing

Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities(VIO输出的稀疏点做三维重建的三角面片)

Keywords: SLAM, Visual-Based Navigation, Sensor Fusion

OVPC Mesh: 3D Free-Space Representation for Local Ground Vehicle Navigation(3D Mesh表示方法,用于无人车避障)

Keywords: Autonomous Vehicle Navigation, Field Robots, Mapping

KO-Fusion: Dense Visual SLAM with Tightly-Coupled Kinematic and Odometric Tracking(机器人运动学与里程计结合的密集三维重建)

Keywords: SLAM, Sensor Fusion, Kinematics

3D Surface Reconstruction Using a Two-Step Stereo Matching Method Assisted with Five Projected Patterns(三维双目结构光重建设备)

Keywords: Computer Vision for Automation, Range Sensing, Computer Vision for Other Robotic Applications

3.6 Localization——Lidar / Vision

Beyond Point Clouds: Fisher Information Field for Active Visual Localization(3D landmark来做视觉定位)

Keywords: Visual-Based Navigation, Localization, Motion and Path Planning

Effective Visual Place Recognition Using Multi-Sequence Maps—IRAL(场景识别定位)

Keywords: Localization

MRS-VPR: A Multi-Resolution Sampling Based Visual Place Recognition Method(场景识别和回环检测,高效、多尺度、粗到细的长期序列VPR)

Keywords: SLAM, Deep Learning in Robotics and Automation, Visual Learning

Probabilistic Appearance-Based Place Recognition through Bag of Tracked Words——IRAL (BTW场景定位)

Keywords: SLAM, Visual-Based Navigation, Recognition

Geometric Relation Distribution for Place Recognition——IRAL(激光雷达的重定位和回环)

Keywords: Mapping, Localization, Range Sensing

代码 https://github.com/dlr1516/grd

3.7 Others

A-SLAM: Human-In-The-Loop Augmented SLAM(交互式SLAM地图和位姿修正方法)

Keywords: SLAM, Virtual Reality and Interfaces, Wheeled Robots

Iteratively Reweighted Midpoint Method for Fast Multiple View Triangulation——IRAL (三角化误差消除方法)

Keywords: SLAM, Mapping

CELLO-3D: Estimating the Covariance of ICP in the Real World(点云ICP)

Keywords: SLAM, Range Sensing, Learning and Adaptive Systems

  1. SLAM Evaluation & Datasets

The Open Vision Computer: An Integrated Sensing and Compute System for Mobile Robots(宾夕法尼亚大学无人机 集成化方案)

Keywords: Aerial Systems: Perception and Autonomy

SLAMBench 3.0: Systematic Automated Reproducible Evaluation of SLAM Systems for Robot Vision Challenges and Scene Understanding(SLAM方法和数据集)

Keywords: SLAM, Performance Evaluation and Benchmarking, Semantic Scene Understanding

Project AutoVision: Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System(自动驾驶系统,数据,GNSS+IMU+Camera的稀疏建图和定位)

BLVD: Building a Large-Scale 5D Semantics Benchmark for Autonomous Driving

Keywords: Performance Evaluation and Benchmarking, Intelligent Transportation Systems

https://github.com/VCCIV/BLVD/

Characterizing Visual Localization and Mapping Datasets(RGBD数据集)

Keywords: Performance Evaluation and Benchmarking, SLAM

Are We Ready for Autonomous Drone Racing? the UZH-FPV Drone Racing Dataset(stereo camera,event-camera数据集)

Keywords: Performance Evaluation and Benchmarking, Localization, Aerial Systems: Perception and Autonomy

An Empirical Evaluation of Ten Depth Cameras for Indoor Environments——IRAM IEEE Robotics & Automation Magazine (深度传感器的评测)

Keywords: Performance Evaluation and Benchmarking, Range Sensing, RGB-D Perception

  1. ICRA AWARD list

Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks(触觉,视觉反馈的机器人装配)

Keywords: Deep Learning in Robotics and Automation, Perception for Grasping and Manipulation, Sensor-based Control

Closing the Sim-To-Real Loop: Adapting Simulation Randomization with Real World Experience(虚拟数据到真实数据的迁移)

Keywords: Learning and Adaptive Systems, Model Learning for Control, Deep Learning in Robotics and Automation