/uvw

Header-only, event based, tiny and easy to use libuv wrapper in modern C++.

Primary LanguageC++MIT LicenseMIT

cynny-logo Sponsored and contributed by Cynny SpA.

uvw

Build Status Build status

Introduction

uvw is a header-only, event based, tiny and easy to use libuv wrapper in modern C++.
The basic idea is to hide completely the C-ish interface of libuv behind a graceful C++ API. Currently, no uv_*_t data structure is actually exposed by the library.
Note that uvw stays true to the API of libuv and it doesn't add anything to its interface. For the same reasons, users of the library must follow the same rules who are used to follow with libuv.
As an example, a handle should be initialized before any other operation and closed once it is no longer in use.

Code Example

#include <uvw.hpp>
#include <memory>

void listen(uvw::Loop &loop) {
    std::shared_ptr<uvw::TcpHandle> tcp = loop.resource<uvw::TcpHandle>();

    tcp->once<uvw::ListenEvent>([](const uvw::ListenEvent &, uvw::TcpHandle &srv) {
        std::shared_ptr<uvw::TcpHandle> client = srv.loop().resource<uvw::TcpHandle>();

        client->on<uvw::CloseEvent>([ptr = srv.shared_from_this()](const uvw::CloseEvent &, uvw::TcpHandle &) { ptr->close(); });
        client->on<uvw::EndEvent>([](const uvw::EndEvent &, uvw::TcpHandle &client) { client.close(); });

        srv.accept(*client);
        client->read();
    });

    tcp->bind("127.0.0.1", 4242);
    tcp->listen();
}

void conn(uvw::Loop &loop) {
    auto tcp = loop.resource<uvw::TcpHandle>();

    tcp->on<uvw::ErrorEvent>([](const uvw::ErrorEvent &, uvw::TcpHandle &) { /* handle errors */ });

    tcp->once<uvw::ConnectEvent>([](const uvw::ConnectEvent &, uvw::TcpHandle &tcp) {
        auto dataWrite = std::unique_ptr<char[]>(new char[2]{ 'b', 'c' });
        tcp.write(std::move(dataWrite), 2);
        tcp.close();
    });

    tcp->connect(std::string{"127.0.0.1"}, 4242);
}

int main() {
    auto loop = uvw::Loop::getDefault();
    listen(*loop);
    conn(*loop);
    loop->run();
}

Motivation

The main reason for which uvw has been written is the fact that it does not exist a valid libuv wrapper in C++. That's all.

Build Instructions

Requirements

To be able to use uvw, users must provide the following system-wide tools:

  • A full-featured compiler that supports at least C++14
  • libuv version 1.9.0 or later

The requirements below are mandatory to compile the tests and to extract the documentation:

  • CMake version 3.4 or later
  • Doxygen version 1.8 or later

Note that libuv is part of the dependencies of the project and it will be cloned by executing the script deps.sh (see below for further details).
Because of that, users have not to install it to compile and execute the tests.

Library

uvw is a header-only library.
This means that including the uvw.hpp header or one of the other uvw/*.hpp headers is enough to use it.
It's a matter of adding the following line at the top of a file:

#include <uvw.hpp>

Then pass the proper -I argument to the compiler to add the src directory to the include paths.
Note that users are demanded to correctly setup include directories and libraries search paths for libuv.

Documentation

API Reference

The documentation is based on doxygen. To build it:

  • $ cd build
  • $ cmake ..
  • $ make docs

The API reference will be created in HTML format within the directory build/docs/html.
To navigate it with your favorite browser:

  • $ cd build
  • $ your_favorite_browser docs/html/index.html

Crash Course

Vademecum

There is only one rule when using uvw: always initialize the resources and terminate them.

Resources belong mainly to two families: handles and requests.
Handles represent long-lived objects capable of performing certain operations while active.
Requests represent (typically) short-lived operations performed either over a handle or standalone.

The following sections will explain in short what it means to initialize and terminate these kinds of resources.

Handles

Initialization is usually performed under the hood and can be even passed over, as far as handles are created using the Loop::resource member function.
On the other side, handles keep themselves alive until one explicitly closes them. Because of that, memory usage will grow up if users simply forget about a handle.
Therefore the rule quickly becomes always close your handles. It's simple as calling the close member function on them.

Requests

Usually initializing a request object is not required. Anyway, the recommended way to create a request is still through the Loop::resource member function.
Requests will keep themselves alive as long as they are bound to unfinished underlying activities. This means that users have not to discard explicitly a request.
Therefore the rule quickly becomes feel free to make a request and forget about it. It's simple as calling a member function on them.

The Loop and the Resource

The first thing to do to use uvw is to create a loop. In case the default one is enough, it's easy as doing this:

auto loop = uvw::Loop::getDefault();

Note that loop objects don't require to be closed explicitly, even if they offer the close member function in case an user wants to do that.
Loops can be started using the run member function. The two calls below are equivalent:

loop->run();
loop->run<uvw::Loop::Mode::DEFAULT>

Available modes are: DEFAULT, ONCE, NOWAIT. Please refer to the documentation of libuv for further details.

In order to create a resource and to bind it to the given loop, just do the following:

auto tcp = loop.resource<uvw::TcpHandle>();

The line above will create and initialize a tcp handle, then a shared pointer to that resource will be returned.
Users should check if pointers have been correctly initialized: in case of errors, they won't be.
Another way to create a resource is:

auto tcp = TcpHandle::create(loop);
tcp->init();

Pretty annoying indeed. Using a loop is the recommended approach.

The resources also accept arbitrary user-data that won't be touched in any case.
Users can set and get them through the data member function as it follows:

resource->data(std::make_shared<int>(42));
std::shared_ptr<void> data = resource->data();

Resources expect a std::shared_pointer<void> and return it, therefore any kind of data is welcome.
Users can explicitly specify a type other than void when calling the data member function:

std::shared_ptr<int> data = resource->data<int>();

Remember from the previous section that a handle will keep itself alive until one invokes the close member function on it.
To know what are the handles that are still alive and bound to a given loop, just do the following:

loop.walk([](uvw::BaseHandle &){ /* application code here */ });

BaseHandle exposes a few methods and cannot be used to know the original type of the handle.
Anyway, it can be used to close the handle that originated from it. As an example, all the pending handles can be closed easily as it follows:

loop.walk([](uvw::BaseHandle &h){ h.close(); });

No need to keep track of them.

To know what are the available resources' types, please refer the API reference.

The event-based approach

For uvw offers an event-based approach, resources are small event emitters to which listeners can be attached.
Attaching a listener to a resource is the recommended way to be notified about changes.
Listeners must be callable objects of type void(EventType &, ResourceType &), where:

  • EventType is the type of the event for which they have been designed
  • ResourceType is the type of the resource that has originated the event

It means that the following function types are all valid:

  • void(EventType &, ResourceType &)
  • void(const EventType &, ResourceType &)
  • void(EventType &, const ResourceType &)
  • void(const EventType &, const ResourceType &)

Once more, please note that there is no need to keep around references to the resources: they will pass themselves as an argument whenever an event is published.

There exist two methods to attach an event to a resource:

  • resource.once<EventType>(listener): the listener will be automatically removed after the first event of the given type
  • resource.on<EventType>(listener): to be used for long-running listeners

Both of them return an object of type ResourceType::Connection (as an example, TcpHandle::Connection).
A connection object can be used later as an argument to the erase member function of the resource to remove the listener.
There exists also the clear member function to drop all the listeners at once.

Almost all the resources use to emit ErrorEvent events in case of errors.
All the other events are specific for the given resource and documented in the API reference.

The code below shows how to create a simple tcp server using uvw:

auto loop = uvw::Loop::getDefault();
auto tcp = loop.resource<uvw::TcpHandle>();

tcp->on<uvw::ErrorEvent>([](const uvw::ErrorEvent &, uvw::TcpHandle &) { /* something went wrong */ });

tcp->on<uvw::ListenEvent>([](const uvw::ListenEvent &, uvw::TcpHandle &srv) {
    std::shared_ptr<uvw::TcpHandle> client = srv.loop().resource<uvw::TcpHandle>();
    client->once<uvw::EndEvent>([](const uvw::EndEvent &, uvw::TcpHandle &client) { client.close(); });
    client->on<uvw::DataEvent>([](const uvw::DataEvent &, uvw::TcpHandle &) { /* data received */ });
    srv.accept(*client);
    client->read();
});

tcp->bind("127.0.0.1", 4242);
tcp->listen();

Note also that uvw::TcpHandle already supports IPv6 out-of-the-box. The statement above is equivalent to tcp->bind<uvw::IPv4>("127.0.0.1", 4242).
It's suffice to explicitly specify uvw::IPv6 as the underlying protocol to use it.

The API reference is the recommended documentation for further details about resources and their methods.

Tests

To compile and run the tests, uvw requires libuv and googletest.
Run the script deps.sh to download them. It is good practice to do it every time one pull the project.

Then, to build the tests:

  • $ cd build
  • $ cmake ..
  • $ make
  • $ make test

Contributors

Michele Caini aka skypjack
Federico Bertolucci aka lessness
Luca Martini aka lordlukas
Elia Mazzuoli aka Zikoel
Francesco De Felice aka fradefe
Tushar Maheshwari aka tusharpm
Paolo Monteverde aka morbo84
Jan Vcelak aka fcelda
Raoul Hecky aka raoul raoulh

If you want to contribute, please send patches as pull requests against the branch master.

License

Code and documentation Copyright (c) 2017 Michele Caini.
Code released under the MIT license.
Docs released under Creative Commons.

Note

This documentation is mostly inspired by the official libuv API documentation for obvious reasons.