stanfordcorenlp
is a Python wrapper for Stanford CoreNLP. It provides a simple API for text processing tasks such as Tokenization, Part of Speech Tagging, Named Entity Reconigtion, Constituency Parsing, Dependency Parsing, and more.
Java 1.8+ (Check with command: java -version
) (Download Page)
Stanford CoreNLP (Download Page)
Py Version | CoreNLP Version |
---|---|
v3.7.0.1 v3.7.0.2 | CoreNLP 3.7.0 |
v3.8.0.1 | CoreNLP 3.8.0 |
v3.9.1.1 | CoreNLP 3.9.1 |
This fork allows MacOS users to run the wrapper without root permissions by default.
This is controlled by the check_connections=False
flag in instantiating a StanfordCoreNLP
object.
The --add-modules java.se.ee
flag is added to support users of Java 9 and above to resolve JAXB dependencies
as discussed on the CoreNLP homepage.
# Simple usage
from stanfordcorenlp import StanfordCoreNLP
nlp = StanfordCoreNLP(r'G:\JavaLibraries\stanford-corenlp-full-2018-02-27')
sentence = 'Guangdong University of Foreign Studies is located in Guangzhou.'
print 'Tokenize:', nlp.word_tokenize(sentence)
print 'Part of Speech:', nlp.pos_tag(sentence)
print 'Named Entities:', nlp.ner(sentence)
print 'Constituency Parsing:', nlp.parse(sentence)
print 'Dependency Parsing:', nlp.dependency_parse(sentence)
nlp.close() # Do not forget to close! The backend server will consume a lot memory.
Output format:
# Tokenize
[u'Guangdong', u'University', u'of', u'Foreign', u'Studies', u'is', u'located', u'in', u'Guangzhou', u'.']
# Part of Speech
[(u'Guangdong', u'NNP'), (u'University', u'NNP'), (u'of', u'IN'), (u'Foreign', u'NNP'), (u'Studies', u'NNPS'), (u'is', u'VBZ'), (u'located', u'JJ'), (u'in', u'IN'), (u'Guangzhou', u'NNP'), (u'.', u'.')]
# Named Entities
[(u'Guangdong', u'ORGANIZATION'), (u'University', u'ORGANIZATION'), (u'of', u'ORGANIZATION'), (u'Foreign', u'ORGANIZATION'), (u'Studies', u'ORGANIZATION'), (u'is', u'O'), (u'located', u'O'), (u'in', u'O'), (u'Guangzhou', u'LOCATION'), (u'.', u'O')]
# Constituency Parsing
(ROOT
(S
(NP
(NP (NNP Guangdong) (NNP University))
(PP (IN of)
(NP (NNP Foreign) (NNPS Studies))))
(VP (VBZ is)
(ADJP (JJ located)
(PP (IN in)
(NP (NNP Guangzhou)))))
(. .)))
# Dependency Parsing
[(u'ROOT', 0, 7), (u'compound', 2, 1), (u'nsubjpass', 7, 2), (u'case', 5, 3), (u'compound', 5, 4), (u'nmod', 2, 5), (u'auxpass', 7, 6), (u'case', 9, 8), (u'nmod', 7, 9), (u'punct', 7, 10)]
Note: you must download an additional model file and place it in the .../stanford-corenlp-full-2018-02-27
folder. For example, you should download the stanford-chinese-corenlp-2018-02-27-models.jar
file if you want to process Chinese.
# _*_coding:utf-8_*_
# Other human languages support, e.g. Chinese
sentence = '清华大学位于北京。'
with StanfordCoreNLP(r'G:\JavaLibraries\stanford-corenlp-full-2018-02-27', lang='zh') as nlp:
print(nlp.word_tokenize(sentence))
print(nlp.pos_tag(sentence))
print(nlp.ner(sentence))
print(nlp.parse(sentence))
print(nlp.dependency_parse(sentence))
Since this will load all the models which require more memory, initialize the server with more memory. 8GB is recommended.
# General json output
nlp = StanfordCoreNLP(r'path_to_corenlp', memory='8g')
print nlp.annotate(sentence)
nlp.close()
You can specify properties:
-
annotators
:tokenize, ssplit, pos, lemma, ner, parse, depparse, dcoref
(See Detail) -
pipelineLanguage
:en, zh, ar, fr, de, es
(English, Chinese, Arabic, French, German, Spanish) (See Annotator Support Detail) -
outputFormat
:json, xml, text
text = 'Guangdong University of Foreign Studies is located in Guangzhou. ' \
'GDUFS is active in a full range of international cooperation and exchanges in education. '
props={'annotators': 'tokenize,ssplit,pos','pipelineLanguage':'en','outputFormat':'xml'}
print nlp.annotate(text, properties=props)
nlp.close()
Start a CoreNLP Server with command:
java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9000 -timeout 15000
And then:
# Use an existing server
nlp = StanfordCoreNLP('http://localhost', port=9000)
import logging
from stanfordcorenlp import StanfordCoreNLP
# Debug the wrapper
nlp = StanfordCoreNLP(r'path_or_host', logging_level=logging.DEBUG)
# Check more info from the CoreNLP Server
nlp = StanfordCoreNLP(r'path_or_host', quiet=False, logging_level=logging.DEBUG)
nlp.close()
We use setuptools
to package our project. You can build from the latest source code with the following command:
$ python setup.py bdist_wheel --universal
You will see the .whl
file under dist
directory.