An evolving how-to guide for securing a Linux server that, hopefully, also teaches you a little about security and why it matters.
- Introduction
- Guide Overview
- Before You Start
- The SSH Server
- The Basics
- The Firewall
- The Danger Zone
- The Auditing
- The Miscellaneous
- Left Over
(TOC made with nGitHubTOC)
This guide's purpose is to teach you how to secure a Linux server.
There are a lot of things you can do to secure a Linux server and this guide will attempt to cover as many of them as possible. More topics/material will be added as I learn, or as folks contribute.
I assume you're using this guide because you, hopefully, already understand why good security is important. That is a heavy topic onto itself and breaking it down is out-of-scope for this guide. If you don't know the answer to that question, I advise you research it first.
At a high level, the second a device, like a server, is in the public domain -- i.e visible to the outside world -- it becomes a target for bad-actors. An unsecured device is a playground for bad-actors who want access to your data, or to use your server as another node for their large-scale DDOS attacks.
What's worse is, without good security, you may never know if your server has been compromised. A bad-actor may have gained unauthorized access to your server and copied your data without changing anything so you'd never know. Or your server may have been part of a DDOS attack and you wouldn't know. Look at many of the large scale data breaches in the news -- the companies often did not discover the data leak or intrusion until long after the bad-actors were gone.
Contrary to popular belief, bad-actors don't always want to change something or lock you out of your data for money. Sometimes they just want the data on your server for their data warehouses (there is big money in big data) or to covertly use your server for their nefarious purposes.
This guide may appear duplicative/unnecessary because there are countless articles online that tell you how to secure Linux, but the information is spread across different articles, that cover different things, and in different ways. Who has time to scour through hundreds of articles?
As I was going through research for my Debian build, I kept notes. At the end I realized that, along with what I already knew, and what I was learning, I had the makings of a how-to guide. I figured I'd put it online to hopefully help others learn, and save time.
I've never found one guide that covers everything -- this guide is my attempt.
Many of the things covered in this guide may be rather basic/trivial, but most of us do not install Linux every day and it is easy to forget those basic things.
IT automation tools like Ansible, Chef, Jenkins, Puppet, etc. help with the tedious task of installing/configuring a server but IMHO they are better suited for multiple or large scale deployments. IMHO, the overhead required to use those kinds of automation tools is wholly unnecessary for a one-time single server install for home use.
There are many guides provided by experts, industry leaders, and the distributions themselves. It is not practical, and sometimes against copyright, to include everything from those guides. I recommend you check them out before starting with this guide.
- The Center for Internet Security (CIS) provides benchmarks that are exhaustive, industry trusted, step-by-step instructions for securing many flavors of Linux. Check their About Us page for details. My recommendation is to go through this guide first and then CIS's guide. That way their recommendations will trump anything in this guide.
- For distribution specific hardening/security guides, check your distributions documentation.
- https://security.utexas.edu/os-hardening-checklist/linux-7 - Red Hat Enterprise Linux 7 Hardening Checklist
- https://cloudpro.zone/index.php/2018/01/18/debian-9-3-server-setup-guide-part-1/ - # Debian 9.3 server setup guide
- https://blog.vigilcode.com/2011/04/ubuntu-server-initial-security-quick-secure-setup-part-i/ - Ubuntu Server Initial Security guide
- https://www.tldp.org/LDP/sag/html/index.html
- https://seifried.org/lasg/
- https://news.ycombinator.com/item?id=19178964
- https://wiki.archlinux.org/index.php/Security - many folks have also recommended this one
- Custom Jails for Fail2ban
- Linux Kernel sysctl Hardening
- Security-Enhanced Linux / SELinux - https://en.wikipedia.org/wiki/Security-Enhanced_Linux, https://linuxtechlab.com/beginners-guide-to-selinux/, https://linuxtechlab.com/replicate-selinux-policies-among-linux-machines/, https://teamignition.us/how-to-stop-being-a-scrub-and-learn-to-use-selinux.html
- disk encryption
- BIOS password
- Anti-Virus
- use ed25519 keys instead of RSA for SSH public/private keys
- psad
- unattended upgrades for critical security updates and patches
- logwatch
- Rkhunter and chrootkit
- AppArmor
- port knockers for SSH - https://news.ycombinator.com/item?id=19181829, https://www.reddit.com/r/linuxadmin/comments/arx7xo/howtosecurealinuxserver_an_evolving_howto_guide/egropaw/
- https://linux-audit.com/linux-system-hardening-adding-hidepid-to-proc/
- https://likegeeks.com/secure-linux-server-hardening-best-practices/#Secure-Mounted-Filesystems
- shipping/backing up logs - https://news.ycombinator.com/item?id=19178681
- Tripwire - https://news.ycombinator.com/item?id=19180856
- MAC (Mandatory Access Control) and Linux Security Modules (LSMs)
- CIS hardening guidelines and benchmarks @ https://www.cisecurity.org/cis-benchmarks/
- Knockd - https://www.reddit.com/r/linuxadmin/comments/arx7xo/howtosecurealinuxserver_an_evolving_howto_guide/egswikz/
- securing NTP - https://www.reddit.com/r/linuxadmin/comments/arx7xo/howtosecurealinuxserver_an_evolving_howto_guide/egqc160/
-
netstat -nlp
- https://www.reddit.com/r/linux/comments/arx7st/howtosecurealinuxserver_an_evolving_howto_guide/egrib6o/
This guide...
- ...is a work in progress.
- ...is focused on at-home Linux servers. All of the concepts/recommendations here apply to larger/professional environments but those use-cases call for more advanced and specialized configurations that are out-of-scope for this guide.
- ...does not teach you about Linux, how to install Linux, or how to use it. Check https://linuxjourney.com/ if you're new to Linux.
- ...is meant to be Linux distribution agnostic.
- ...does not teach you everything you need to know about security nor does it get into all aspects of system/server security. For example, physical security is out of scope for this guide.
- ...does not talk about how programs/tools work, nor does it delve into their nook and crannies. Most of the programs/tools this guide references are very powerful and highly configurable. The goal is to cover the bare necessities -- enough to whet your appetite and make you hungry enough to want to go and learn more.
- ...aims to make it easy by providing code you can copy-and-paste. You might need to modify the commands before you paste so keep your favorite text editor handy.
- ...is organized in an order that makes logical sense to me -- i.e. securing SSH before installing a firewall. As such, this guide is intended to be followed in the order it is presented but it is not necessary to do so. Just be careful if you do things in a different order -- some sections require previous sections to be completed.
There are many types of servers and different use-cases. While I want this guide to be as generic as possible, there will be some things that may not apply to all/other use-cases. Use your best judgement when going through this guide.
To help put context to many of the topics covered in this guide, my use-case/configuration is:
- A desktop class computer...
- With a single NIC...
- Connected to a consumer grade router...
- Getting a dynamic WAN IP provided by the ISP...
- With WAN+LAN on IPV4...
- And LAN using NAT...
- That I want to be able to SSH to remotely from unknown computers and unknown locations (i.e. a friend's house).
I am very lazy and do not like to edit files by hand if I don't need to. I also assume everyone else is just like me. :)
So, when and where possible, I have provided code
snippets to quickly do what is needed, like add or change a line in a configuration file.
The code
snippets use basic commands like echo
, cat
, sed
, awk
, and grep
. How the code
snippets work, like what each command/part does, is out of scope for this guide -- the man
pages are your friend.
Note: The code
snippets do not validate/verify the change went through -- i.e. the line was actually added or changed. I'll leave the verifying part in your capable hands. The steps in this guide do include taking backups of all files that will be changed.
Not all changes can be automated with code
snippets. Those changes need good, old fashioned, manual editing. For example, you can't just append a line to an INI type file. Use your favorite Linux text editor.
I wanted to put this guide on GitHub to make it easy to collaborate. The more folks that contribute, the better and more complete this guide will become.
To contribute you can fork and submit a pull request or submit a new issue.
Before you start you will want to identify what your Principles are. What is your threat model? Some things to think about:
- Why do you want to secure your server?
- How much security do you want or not want?
- How much convenience are you willing to compromise for security and vice-versa?
- What are the threats you want to protect against? What are the specifics to your situation? For example:
- Is physical access to your server/network a possible attack vector?
- Will you be opening ports on your router so you can access your server from outside your home?
- Will you be hosting a file share on your server that will be mounted on a desktop class machine? What is the possibility of the desktop machine getting infected and, in turn, infecting the server?
- Do you have a means of recovering if your security implementation locks you out of your own server? For example, you disabled root login or password protected GRUB.
These are just a few things to think about. Before you start securing your server you will want to understand what you're trying to protect against and why so you know what you need to do.
This guide is intended to be distribution agnostic so users can use any distribution they want. With that said, there are a few things to keep in mind:
You want a distribution that...
- ...is stable. Unless you like debugging issues at 2 AM, you don't want an unattended upgrade, or a manual package/system update, to render your server inoperable. But this also means you're okay with not running the latest, greatest, bleeding edge software.
- ...stays up-to-date with security patches. You can secure everything on your server, but if the core OS or applications you're running have known vulnerabilities, you'll never be safe.
- ...you're familiar with. If you don't know Linux, I would advise you play around with one before you try to secure it. You should be comfortable with it and know your way around, like how to install software, where configuration files are, etc...
- ...is well supported. Even the most seasoned admin needs help every now and then. Having a place to go for help will save your sanity.
Installing Linux is out-of-scope for this guide because each distribution does it differently and the installation instructions are usually well documented. If you need help, start with your distribution's documentation. Regardless of the distribution, the high-level process usually goes like so:
- download the ISO
- burn/copy/transfer it to your install medium (e.g. a CD or USB stick)
- boot your server from your install medium
- follow the prompts to install
Where applicable, use the expert install option so you have tighter control of what is running on your server. Only install what you absolutely need. I, personally, do not install anything other than SSH.
- If you're opening ports on your router so you can access your server from the outside, disable the port forwarding until your system is up and secured.
- Unless you're doing everything physically connected to your server, you'll need remote access so be sure SSH works.
- Keep your system up-to-date (i.e.
sudo apt update && sudo apt upgrade
on Debian based systems). - Make sure you perform any tasks specific to your setup like:
- Configuring network
- Configuring mount points in
/etc/fstab
- Creating the initial user accounts
- Installing core software you'll want like
man
- Etc...
- Your server will need to be able to send e-mails so you can get important security alerts. If you're not setting up a mail server check Configure Gmail As MTA With Implicit TLS.
- I would also recommend you go through the CIS Benchmarks before you start with this guide.
- This guide is being written and tested on Debian. Most things below should work on other distributions. If you find something that does not, please contact me. The main thing that separates each distribution will be its package management system. Since I use Debian, I will provide the appropriate
apt
commands that should work on all Debian based distributions. If someone is willing to provide the respective commands for other distributions, I will add them. - File paths and settings also may differ slightly -- check with your distribution's documentation if you have issues.
- Read the whole guide before you start. Your use-case and/or principals may call for not doing something or for changing the order.
- Do not blindly copy-and-paste without understanding what you're pasting. Some commands will need to be modified for your needs before they'll work -- usernames for example.
Using SSH public/private keys is more secure than using a password. It also makes it easier and faster, to connect to our server because you don't have to enter a password.
Check the references below for more details but, at a high level, public/private keys work by using a pair of keys to verify identity.
- One key, the public key, can only encrypt data, not decrypt it
- The other key, the private key, can decrypt the data
For SSH, a public and private key is created on the client. You want to keep both keys secure, especially the private key. Even though the public key is meant to be public, it is wise to make sure neither keys fall in the wrong hands.
When you connect to an SSH server, SSH will look for a public key that matches the client you're connecting from in the file ~/.ssh/authorized_keys
on the server you're connecting to. Notice the file is in the home folder of the ID you're trying to connect to. So, after creating the public key, you need to append it to ~/.ssh/authorized_keys
. One approach is to copy it to a USB stick and physically transfer it to the server. Anther approach is to use use ssh-copy-id
to transfer and append the public key.
After the keys have been created and the public key has been appended to ~/.ssh/authorized_keys
on the host, SSH uses the public and private keys to verify identity and then establish a secure connection. How identity is verified is a complicated process but Digital Ocean has a very nice write-up of how it works. At a high level, identity is verified by the server encrypting a challenge message with the public key, then sending it to the client. If the client cannot decrypt the challenge message with the private key, the identity can't be verified and a connection will not be established.
They are considered more secure because you need the private key to establish an SSH connection. If you set PasswordAuthentication no
in /etc/ssh/sshd_config
, then SSH won't let you connect without the private key.
You can also set a pass-phrase for the keys which would require you to enter the key pass-phrase when connecting using public/private keys. Keep in mind doing this means you can't use the key for automation because you'll have no way to send the passphrase in your scripts. ssh-agent
is a program that is shipped in many Linux distros (and usually already running) that will allow you to hold your unencrypted private key in memory for a configurable duration. Simply run ssh-add
and it will prompt you for your passphrase. You will not be prompted for your passphrase again until the configurable duration has passed.
We will be using Ed25519 keys which, according to https://linux-audit.com/:
It is using an elliptic curve signature scheme, which offers better security than ECDSA and DSA. At the same time, it also has good performance.
- Ed25519 public/private SSH keys:
- private key on your client
- public key on your server
- You'll need to do this step for every computer and account you'll be connecting to your server from/as.
- https://www.ssh.com/ssh/public-key-authentication
- https://help.ubuntu.com/community/SSH/OpenSSH/Keys
- https://linux-audit.com/using-ed25519-openssh-keys-instead-of-dsa-rsa-ecdsa/
- https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process
- https://wiki.archlinux.org/index.php/SSH_Keys
- https://www.ssh.com/ssh/copy-id
man ssh-keygen
man ssh-copy-id
man ssh-add
-
From the computer you're going to use to connect to your server, the client, not the server itself, create an Ed25519 key with
ssh-keygen
:ssh-keygen -t ed25519
Generating public/private ed25519 key pair. Enter file in which to save the key (/home/user/.ssh/id_ed25519): Created directory '/home/user/.ssh'. Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/user/.ssh/id_ed25519. Your public key has been saved in /home/user/.ssh/id_ed25519.pub. The key fingerprint is: SHA256:F44D4dr2zoHqgj0i2iVIHQ32uk/Lx4P+raayEAQjlcs user@client The key's randomart image is: +--[ED25519 256]--+ |xxxx x | |o.o +. . | | o o oo . | |. E oo . o . | | o o. o S o | |... .. o o | |.+....+ o | |+.=++o.B.. | |+..=**=o=. | +----[SHA256]-----+
Note: If you set a passphrase, you'll need to enter it every time you connect to your server using this key, unless you're using
ssh-agent
. -
Now you need to append the public key
~/.ssh/id_ed25519.pub
from your client to the~/.ssh/authorized_keys
file on your server. Since we're presumable still at home on the LAN, we're probably safe from MIM attacks, so we will usessh-copy-id
to transfer and append the public key:ssh-copy-id user@server
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/user/.ssh/id_ed25519.pub" The authenticity of host 'host (192.168.1.96)' can't be established. ECDSA key fingerprint is SHA256:QaDQb/X0XyVlogh87sDXE7MR8YIK7ko4wS5hXjRySJE. Are you sure you want to continue connecting (yes/no)? yes /usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already installed /usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is to install the new keys user@host's password: Number of key(s) added: 1 Now try logging into the machine, with: "ssh 'user@host'" and check to make sure that only the key(s) you wanted were added.
Now would be a good time to perform any tasks specific to your setup.
To make it easy to control who can SSH to the server. By using a group, we can quickly add/remove accounts to the group to quickly allow or not allow SSH access to the server.
We will use the AllowGroups option in SSH's configuration file /etc/ssh/sshd_config
. to tell the SSH server to only allow users to SSH in if they are a member of a certain UNIX group. Anyone not in the group will not be able to SSH in.
- a UNIX group that we'll use in Secure
/etc/ssh/sshd_config
to limit who can SSH to the server
- This is a per-requisite step to support the
AllowGroup
setting set in Secure/etc/ssh/sshd_config
.
man groupadd
man usermod
-
Create a group:
sudo groupadd sshusers
-
Add account(s) to the group:
sudo usermod -a -G sshusers user1 sudo usermod -a -G sshusers user2 sudo usermod -a -G sshusers ...
You'll need to do this for every account on your server that needs SSH access.
SSH is a door into your server. This is especially true if you are opening ports on your router so you can SSH to your server from outside your home network. If it is not secured properly, a bad-actor could use it to gain unauthorized access to your system.
/etc/ssh/sshd_config
is the default configuration file that the SSH server uses. We will use this file to tell what options the SSH server should use.
- a secure SSH configuration
- Make sure you've completed Create SSH Group For AllowGroups first.
- Mozilla's OpenSSH guidelines for OpenSSH 6.7+ at https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67
- https://linux-audit.com/audit-and-harden-your-ssh-configuration/
- https://www.ssh.com/ssh/sshd_config/
- https://www.techbrown.com/harden-ssh-secure-linux-vps-server/
- https://serverfault.com/questions/660160/openssh-difference-between-internal-sftp-and-sftp-server/660325
man sshd_config
-
Make a backup of OpenSSH server's configuration file
/etc/ssh/sshd_config
and remove comments to make it easier to read:sudo cp --preserve /etc/ssh/sshd_config /etc/ssh/sshd_config.$(date +"%Y%m%d%H%M%S") sudo sed -i -r -e '/^#|^$/ d' /etc/ssh/sshd_config
-
Edit
/etc/ssh/sshd_config
then find and edit or add these settings that should be applied regardless of your configuration/setup:Note: SSH does not like duplicate contradicting settings. For example, if you have
ChallengeResponseAuthentication no
and thenChallengeResponseAuthentication yes
, SSH will respect the first one and ignore the second. Your/etc/ssh/sshd_config
file may already have some of the settings/lines below. To avoid issues you will need to manually go through your/etc/ssh/sshd_config
file and address any duplicate contradicting settings. (If anyone knows a way to programatically do this I would love to hear how.)######################################################################################################## # start settings from https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67 as of 2019-01-01 ######################################################################################################## # Supported HostKey algorithms by order of preference. HostKey /etc/ssh/ssh_host_ed25519_key HostKey /etc/ssh/ssh_host_rsa_key HostKey /etc/ssh/ssh_host_ecdsa_key KexAlgorithms curve25519-sha256@libssh.org,ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-group-exchange-sha256 Ciphers chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr MACs hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-512,hmac-sha2-256,umac-128@openssh.com # LogLevel VERBOSE logs user's key fingerprint on login. Needed to have a clear audit track of which key was using to log in. LogLevel VERBOSE # Use kernel sandbox mechanisms where possible in unprivileged processes # Systrace on OpenBSD, Seccomp on Linux, seatbelt on MacOSX/Darwin, rlimit elsewhere. # Note: This setting is deprecated in OpenSSH 7.5 (https://www.openssh.com/txt/release-7.5) UsePrivilegeSeparation sandbox ######################################################################################################## # end settings from https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67 as of 2019-01-01 ######################################################################################################## # don't let users set environment variables PermitUserEnvironment no # Log sftp level file access (read/write/etc.) that would not be easily logged otherwise. Subsystem sftp internal-sftp -f AUTHPRIV -l INFO # only use the newer, more secure protocol Protocol 2 # disable X11 forwarding as X11 is very insecure # you really shouldn't be running X on a server anyway X11Forwarding no # disable port forwarding AllowTcpForwarding no AllowStreamLocalForwarding no GatewayPorts no PermitTunnel no # don't allow login if the account has an empty password PermitEmptyPasswords no # ignore .rhosts and .shosts IgnoreRhosts yes # verify hostname matches IP UseDNS no Compression no TCPKeepAlive no AllowAgentForwarding no PermitRootLogin no # don't allow .rhosts or /etc/hosts.equiv HostbasedAuthentication no
-
Then find and edit or add these settings, and set values as per your requirements:
Setting Valid Values Example Description Notes AllowGroups local UNIX group name AllowGroups sshusers
group to allow SSH access to ClientAliveCountMax number ClientAliveCountMax 0
maximum number of client alive messages sent without response ClientAliveInterval number of seconds ClientAliveInterval 300
timeout in seconds before a response request ListenAddress space separated list of local addresses ListenAddress 0.0.0.0
ListenAddress 192.168.1.100
local addresses sshd
should listen onSee Issue #1 for important details. LoginGraceTime number of seconds LoginGraceTime 30
time in seconds before login times-out MaxAuthTries number MaxAuthTries 2
maximum allowed attempts to login MaxSessions number MaxSessions 2
maximum number of open sessions MaxStartups number MaxStartups 2
maximum number of login sessions PasswordAuthentication yes
orno
PasswordAuthentication no
if login with a password is allowed Port any open/available port number Port 22
port that sshd
should listen onCheck
man sshd_config
for more details what these settings mean. -
Restart ssh:
sudo service sshd restart
-
You can check verify the configurations worked with
sshd -T
and verify the output:sudo sshd -T
port 22 addressfamily any listenaddress [::]:22 listenaddress 0.0.0.0:22 usepam yes logingracetime 30 x11displayoffset 10 maxauthtries 2 maxsessions 2 clientaliveinterval 300 clientalivecountmax 0 streamlocalbindmask 0177 permitrootlogin no ignorerhosts yes ignoreuserknownhosts no hostbasedauthentication no ... subsystem sftp internal-sftp -f AUTHPRIV -l INFO maxstartups 2:30:2 permittunnel no ipqos lowdelay throughput rekeylimit 0 0 permitopen any
Per Mozilla's OpenSSH guidelines for OpenSSH 6.7+, "all Diffie-Hellman moduli in use should be at least 3072-bit-long".
The Diffie-Hellman algorithm is used by SSH to establish a secure connection. The larger the moduli (key size) the stronger the encryption.
- remove all Diffie-Hellman keys that are less than 3072 bits long
- Mozilla's OpenSSH guidelines for OpenSSH 6.7+ at https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67
- https://infosec.mozilla.org/guidelines/key_management
man moduli
-
Make a backup of SSH's moduli file
/etc/ssh/moduli
:sudo cp --preserve /etc/ssh/moduli /etc/ssh/moduli.$(date +"%Y%m%d%H%M%S")
-
Remove short moduli:
sudo awk '$5 >= 3071' /etc/ssh/moduli | sudo tee /etc/ssh/moduli.tmp sudo mv /etc/ssh/moduli.tmp /etc/ssh/moduli
Even though SSH is a pretty good security guard for your doors and windows, it is still a visible door that bad-actors can see and try to brute-force in. Fail2ban will monitor for these brute-force attempts but there is no such thing as being too secure. Requiring two factors adds an extra layer of security.
Using Two Factor Authentication (2FA) / Multi Factor Authentication (MFA) requires anyone entering to have two keys to enter which makes it harder for bad actors. The two keys are:
- Their password
- A 6 digit token that changes every 30 seconds
Without both keys, they won't be able to get in.
Many folks might find the experience cumbersome or annoying. And, access to your system is dependent on the accompanying authenticator app that generates the code.
On Linux, PAM is responsible for authentication. There are four tasks to PAM that you can read about at https://en.wikipedia.org/wiki/Linux_PAM. This section talks about the authentication task.
When you log into a server, be it directly from the console or via SSH, the door you came through will send the request to the authentication task of PAM and PAM will ask for and verify your password. You can customize the rules each doors use. For example, you could have one set of rules when logging in directly from the console and another set of rules for when logging in via SSH.
This section will alter the authentication rules for when logging in via SSH to require both a password and a 6 digit code.
We will use Google's libpam-google-authenticator PAM module to create and verify a TOTP key. https://fastmail.blog/2016/07/22/how-totp-authenticator-apps-work/ and https://jemurai.com/2018/10/11/how-it-works-totp-based-mfa/ have very good writeups of how TOTP works.
What we will do is tell the server's SSH PAM configuration to ask the user for their password and then their numeric token. PAM will then verify the user's password and, if it is correct, then it will route the authentication request to libpam-google-authenticator which will ask for and verify your 6 digit token. If, and only if, everything is good will the authentication succeed and user be allowed to log in.
- 2FA/MFA enabled for all SSH connections
- Before you do this, you should have an idea of how 2FA/MFA works and you'll need an authenticator app on your phone to continue.
- We'll use google-authenticator-libpam.
- With the below configuration, a user will only need to enter their 2FA/MFA code if they are logging on with their password but not if they are using SSH public/private keys. Check the documentation on how to change this behavior to suite your requirements.
- https://github.com/google/google-authenticator-libpam
- https://en.wikipedia.org/wiki/Linux_PAM
- https://en.wikipedia.org/wiki/Time-based_One-time_Password_algorithm
- https://fastmail.blog/2016/07/22/how-totp-authenticator-apps-work/
- https://jemurai.com/2018/10/11/how-it-works-totp-based-mfa/
-
Install it libpam-google-authenticator.
On Debian based systems:
sudo apt install libpam-google-authenticator
-
Make sure you're logged in as the ID you want to enable 2FA/MFA for and execute
google-authenticator
to create the necessary token data:google-authenticator
Do you want authentication tokens to be time-based (y/n) y https://www.google.com/chart?chs=200x200&chld=M|0&cht=qr&chl=otpauth://totp/user@host%3Fsecret%3DR4ZWX34FQKZROVX7AGLJ64684Y%26issuer%3Dhost ... Your new secret key is: R3NVX3FFQKZROVX7AGLJUGGESY Your verification code is 751419 Your emergency scratch codes are: 12345678 90123456 78901234 56789012 34567890 Do you want me to update your "/home/user/.google_authenticator" file (y/n) y Do you want to disallow multiple uses of the same authentication token? This restricts you to one login about every 30s, but it increases your chances to notice or even prevent man-in-the-middle attacks (y/n) Do you want to disallow multiple uses of the same authentication token? This restricts you to one login about every 30s, but it increases your chances to notice or even prevent man-in-the-middle attacks (y/n) y By default, tokens are good for 30 seconds. In order to compensate for possible time-skew between the client and the server, we allow an extra token before and after the current time. If you experience problems with poor time synchronization, you can increase the window from its default size of +-1min (window size of 3) to about +-4min (window size of 17 acceptable tokens). Do you want to do so? (y/n) y If the computer that you are logging into isn't hardened against brute-force login attempts, you can enable rate-limiting for the authentication module. By default, this limits attackers to no more than 3 login attempts every 30s. Do you want to enable rate-limiting (y/n) y
Notice this is not run as root.
Select default option (y in most cases) for all the questions it asks and remember to save the emergency scratch codes.
-
Make a backup of PAM's SSH configuration file
/etc/pam.d/sshd
:sudo cp --preserve /etc/pam.d/sshd /etc/pam.d/sshd.$(date +"%Y%m%d%H%M%S")
-
Now we need to enable it as an authentication method for SSH by adding this line to
/etc/pam.d/sshd
:auth required pam_google_authenticator.so nullok
Note: Check here for what
nullok
means.echo -e "\nauth required pam_google_authenticator.so nullok # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /etc/pam.d/sshd
-
Tell SSH to leverage it by adding or editing this line in
/etc/ssh/sshd_config
:ChallengeResponseAuthentication yes
sudo sed -i -r -e "s/^(challengeresponseauthentication .*)$/# \1 # commented by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")/I" /etc/ssh/sshd_config echo -e "\nChallengeResponseAuthentication yes # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /etc/ssh/sshd_config
-
Restart ssh:
sudo service sshd restart
sudo lets accounts run commands as other accounts, including root. We want to make sure that only the accounts we want can use sudo.
- sudo privileges limited to those who are in a group we specify
- Your installation may have already done this, or may already have a special group intended for this purpose so check first.
- Debian creates the sudo group
- RedHat creates the wheel group
-
Create a group:
sudo groupadd sudousers
-
Add account(s) to the group:
sudo usermod -a -G sudousers user1 sudo usermod -a -G sudousers user2 sudo usermod -a -G sudousers ...
You'll need to do this for every account on your server that needs sudo privileges.
-
Make a backup of the sudo's configuration file
/etc/sudoers
:sudo cp --preserve /etc/sudoers /etc/sudoers.$(date +"%Y%m%d%H%M%S")
-
Edit sudo's configuration file
/etc/sudoers
:sudo visudo
-
Tell sudo to only allow users in the
sudousers
group to use sudo by adding this line if it is not already there:%sudousers ALL=(ALL:ALL) ALL
Many security protocols leverage the time. If your system time is incorrect, it could have negative impacts to your server. An NTP client can solve that problem by keeping your system time in-sync with global NTP servers
NTP stands for Network Time Protocol. In the context of this guide, an NTP client on the server is used to update the server time with the official time pulled from official servers. Check https://www.pool.ntp.org/en/ for all of the public NTP servers.
- NTP client installed and keeping server time in-sync
- https://cloudpro.zone/index.php/2018/01/27/debian-9-3-server-setup-guide-part-4/
- https://en.wikipedia.org/wiki/Network_Time_Protocol
- https://www.pool.ntp.org/en/
-
Install ntp.
On Debian based systems:
sudo apt install ntp
-
Check the status of the ntp service:
sudo systemctl status ntp
● ntp.service - LSB: Start NTP daemon Loaded: loaded (/etc/init.d/ntp; generated; vendor preset: enabled) Active: active (running) since Sat 2019-02-16 00:32:20 EST; 3s ago Docs: man:systemd-sysv-generator(8) CGroup: /system.slice/ntp.service └─1051 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 109:114 Feb 16 00:32:20 host ntpd[1051]: Listen normally on 3 enp0s3 192.168.1.96:123 Feb 16 00:32:20 host ntpd[1051]: Listen normally on 4 lo [::1]:123 Feb 16 00:32:20 host ntpd[1051]: Listen normally on 5 enp0s3 [fe80::a00:27ff:feb6:ed8e%2]:123 Feb 16 00:32:20 host ntpd[1051]: Listening on routing socket on fd #22 for interface updates Feb 16 00:32:21 host ntpd[1051]: Soliciting pool server 173.255.206.154 Feb 16 00:32:22 host ntpd[1051]: Soliciting pool server 216.6.2.70 Feb 16 00:32:22 host ntpd[1051]: Soliciting pool server 82.197.188.130 Feb 16 00:32:23 host ntpd[1051]: Soliciting pool server 95.215.175.2 Feb 16 00:32:23 host ntpd[1051]: Soliciting pool server 107.155.79.108 Feb 16 00:32:23 host ntpd[1051]: Soliciting pool server 212.110.158.28
-
Check ntp's status:
sudo ntpq -p
remote refid st t when poll reach delay offset jitter ============================================================================== 0.debian.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000 1.debian.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000 2.debian.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000 3.debian.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000 -li216-154.membe 45.56.123.24 3 u 119 64 2 51.912 0.663 2.311 +eudyptula.init7 162.23.41.10 2 u 60 64 3 99.378 1.563 3.485 +107.155.79.108 129.7.1.66 2 u 119 64 2 49.171 -1.372 1.441 -212.110.158.28 89.109.251.21 2 u 120 64 2 167.465 -1.064 1.263 *ec2-54-242-183- 128.10.19.24 2 u 62 64 3 19.157 2.536 4.434 -69.195.159.158 128.252.19.1 2 u 119 64 2 42.990 6.302 3.507 -200.89.75.198 ( 200.27.106.115 2 u 58 64 3 160.786 42.737 12.827
By default, accounts can use any password they want, including bad ones. pwquality/pam_pwquality addresses this security gap by providing "a way to configure the default password quality requirements for the system passwords" and checking "its strength against a system dictionary and a set of rules for identifying poor choices."
On Linux, PAM is responsible for authentication. There are four tasks to PAM that you can read about at https://en.wikipedia.org/wiki/Linux_PAM. This section talks about the password task.
When there is a need to set or change an account password, the password task of PAM handles the request. In this section we will tell PAM's password task to pass the requested new password to libpam-pwquality to make sure it meets our requirements. If the requirements are met it is used/set; if it does not meet the requirements it errors and lets the user know.
- enforced strong passwords
-
Install libpam-pwquality.
On Debian based systems:
sudo apt install libpam-pwquality
-
Make a backup of PAM's password configuration file
/etc/pam.d/common-password
:sudo cp --preserve /etc/pam.d/common-password /etc/pam.d/common-password.$(date +"%Y%m%d%H%M%S")
-
Tell PAM to use libpam-pwquality to enforce strong passwords by editing the file
/etc/pam.d/common-password
and change the line that starts like this:password requisite pam_pwquality.so
to this:
password requisite pam_pwquality.so retry=3 minlen=10 difok=3 ucredit=-1 lcredit=-1 dcredit=-1 ocredit=-1 maxrepeat=3 gecoschec
The above options are:
retry=3
= prompt user 3 times before returning with error.minlen=10
= the minimum length of the password, factoring in any credits (or debits) from these:dcredit=-1
= must have at least one digitucredit=-1
= must have at least one upper case letterlcredit=-1
= must have at least one lower case letterocredit=-1
= must have at least one non-alphanumeric character
difok=3
= at least 3 characters from the new password cannot have been in the old passwordmaxrepeat=3
= allow a maximum of 3 repeated charactersgecoschec
= do not allow passwords with the account's name
sudo sed -i -r -e "s/^(password\s+requisite\s+pam_pwquality.so)(.*)$/# \1\2 # commented by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")\n\1 retry=3 minlen=10 difok=3 ucredit=-1 lcredit=-1 dcredit=-1 ocredit=-1 maxrepeat=3 gecoschec # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")/" /etc/pam.d/common-password
It is important to keep a server updated with the latest critical security patches and updates. Otherwise you're at risk of known security vulnerabilities that bad-actors could use to gain unauthorized access to your server.
Unless you plan on checking your server every day, you'll want a way to automatically update the system and/or get emails about available updates.
You don't want to do all updates because with every update there is a risk of something breaking. It is important to do the critical updates but everything else can wait until you have time to do it manually.
Automatic and unattended updates may break your system and you may not be near your server to fix it. This would be especially problematic if it broke your SSH access.
- Each distribution manages packages and updates differently. So far I only have steps for Debian based systems.
- Your server will need a way to send e-mails for this to work
- Automatic, unattended, updates of critical security patches
- Automatic emails of remaining pending updates
On Debian based systems you can use:
- unattended-upgrades to automatically do system updates you want (i.e. critical security updates)
- apt-listchanges to get details about package changes before they are installed/upgraded
- apticron to get emails for pending package updates
We will use unattended-upgrades to apply critical security patches. We can also apply stable updates since they've already been thoroughly tested by the Debian community.
- https://wiki.debian.org/UnattendedUpgrades
- https://debian-handbook.info/browse/stable/sect.regular-upgrades.html
- https://blog.sleeplessbeastie.eu/2015/01/02/how-to-perform-unattended-upgrades/
- https://www.vultr.com/docs/how-to-set-up-unattended-upgrades-on-debian-9-stretch
- https://github.com/mvo5/unattended-upgrades
- https://wiki.debian.org/UnattendedUpgrades#apt-listchanges
- https://www.cyberciti.biz/faq/apt-get-apticron-send-email-upgrades-available/
- https://www.unixmen.com/how-to-get-email-notifications-for-new-updates-on-debianubuntu/
/etc/apt/apt.conf.d/50unattended-upgrades
-
Install unattended-upgrades, apt-listchanges, and apticron:
sudo apt install unattended-upgrades apt-listchanges apticron
-
Now we need to configure unattended-upgrades to automatically apply the updates. This is typically done by editing the files
/etc/apt/apt.conf.d/20auto-upgrades
and/etc/apt/apt.conf.d/50unattended-upgrades
that were created by the packages. However, because these file may get overwritten with a future update, we'll create a new file instead. Create the file/etc/apt/apt.conf.d/51myunattended-upgrades
and add this:// Enable the update/upgrade script (0=disable) APT::Periodic::Enable "1"; // Do "apt-get update" automatically every n-days (0=disable) APT::Periodic::Update-Package-Lists "1"; // Do "apt-get upgrade --download-only" every n-days (0=disable) APT::Periodic::Download-Upgradeable-Packages "1"; // Do "apt-get autoclean" every n-days (0=disable) APT::Periodic::AutocleanInterval "7"; // Send report mail to root // 0: no report (or null string) // 1: progress report (actually any string) // 2: + command outputs (remove -qq, remove 2>/dev/null, add -d) // 3: + trace on APT::Periodic::Verbose "2"; APT::Periodic::Unattended-Upgrade "1"; // Automatically upgrade packages from these Unattended-Upgrade::Origins-Pattern { "o=Debian,a=stable"; "o=Debian,a=stable-updates"; "origin=Debian,codename=${distro_codename},label=Debian-Security"; }; // You can specify your own packages to NOT automatically upgrade here Unattended-Upgrade::Package-Blacklist { }; // Run dpkg --force-confold --configure -a if a unclean dpkg state is detected to true to ensure that updates get installed even when the system got interrupted during a previous run Unattended-Upgrade::AutoFixInterruptedDpkg "true"; //Perform the upgrade when the machine is running because we wont be shutting our server down often Unattended-Upgrade::InstallOnShutdown "false"; // Send an email to this address with information about the packages upgraded. Unattended-Upgrade::Mail "root"; // Always send an e-mail Unattended-Upgrade::MailOnlyOnError "false"; // Remove all unused dependencies after the upgrade has finished Unattended-Upgrade::Remove-Unused-Dependencies "true"; // Remove any new unused dependencies after the upgrade has finished Unattended-Upgrade::Remove-New-Unused-Dependencies "true"; // Automatically reboot WITHOUT CONFIRMATION if the file /var/run/reboot-required is found after the upgrade. Unattended-Upgrade::Automatic-Reboot "true"; // Automatically reboot even if users are logged in. Unattended-Upgrade::Automatic-Reboot-WithUsers "true";
Notes:
- Check
/usr/lib/apt/apt.systemd.daily
for details on theAPT::Periodic
options - Check https://github.com/mvo5/unattended-upgrades for details on the
Unattended-Upgrade
options
- Check
-
Run a dry-run of unattended-upgrades to make sure your configuration file is okay:
sudo unattended-upgrade -d --dry-run
If everything is okay, you can let it run whenever it's scheduled to or force a run with
unattended-upgrade -d
. -
Configure apt-listchanges to your liking:
sudo dpkg-reconfigure apt-listchanges
-
Install apticron:
sudo apt install apticron
The default settings are good enough but you can check them in
/etc/apticron/apticron.conf
if you want to change them. For example, my configuration looks like this:EMAIL="root" NOTIFY_NO_UPDATES="1"
Your server will be generating a lot of logs that may contain important information. Unless you plan on checking your server everyday, you'll want a way to get e-mail summary of your server's logs. To accomplish this we'll use logwatch.
logwatch scans system log files and summarizes them. You can run it directly from the command line or schedule it to run on a recurring schedule. logwatch uses service files to know how to read/summarize a log file. You can see all of the stock service files in /usr/share/logwatch/scripts/services
.
logwatch's configuration file /usr/share/logwatch/default.conf/logwatch.conf
specifies default options. You can override them via command line arguments.
- Logwatch configured to send a daily e-mail summary of all of the server's status and logs
- Your server will need to be able to send e-mails for this to work
- The below steps will result in logwatch running every day. If you want to change the schedule, modify the cronjob to your liking. You'll also want to change the
range
option to cover your recurrence window. See https://www.badpenguin.org/configure-logwatch-for-weekly-email-and-html-output-format for an example. - If logwatch fails to deliver mail due to the e-mail having long lines please check https://blog.dhampir.no/content/exim4-line-length-in-debian-stretch-mail-delivery-failed-returning-message-to-sender as documented in issue #29. If you you followed Configure Gmail As MTA With Implicit TLS then we already took care of this in step #7.
- Thanks to amacheema for fixing some issues with the steps and letting me know of a long line bug with exim4 as documented in issue #29.
- https://sourceforge.net/projects/logwatch/
- https://www.digitalocean.com/community/tutorials/how-to-install-and-use-logwatch-log-analyzer-and-reporter-on-a-vps
-
Install logwatch.
On Debian based systems:
sudo apt install logwatch
-
To see a sample of what logwatch collects you can run it directly:
sudo /usr/sbin/logwatch --output stdout --format text --range yesterday --service all
################### Logwatch 7.4.3 (12/07/16) #################### Processing Initiated: Mon Mar 4 00:05:50 2019 Date Range Processed: yesterday ( 2019-Mar-03 ) Period is day. Detail Level of Output: 5 Type of Output/Format: stdout / text Logfiles for Host: host ################################################################## --------------------- Cron Begin ------------------------ ... ... ---------------------- Disk Space End ------------------------- ###################### Logwatch End #########################
-
Go through logwatch's self-documented configuration file
/usr/share/logwatch/default.conf/logwatch.conf
before continuing. There is no need to change anything here but pay special attention to theOutput
,Format
,MailTo
,Range
, andService
as those are the ones we'll be using. For our purposes, instead of specifying our options in the configuration file, we will pass them as command line arguments in the daily cron job that executes logwatch. That way, if the configuration file is ever modified (e.g. during an update), our options will still be there. -
Make a backup of logwatch's daily cron file
/etc/cron.daily/00logwatch
and unset the execute bit:sudo cp --preserve /etc/cron.daily/00logwatch /etc/cron.daily/00logwatch.$(date +"%Y%m%d%H%M%S") sudo chmod -x /etc/cron.daily/00logwatch.*
-
By default, logwatch outputs to
stdout
. Since the goal is to get a daily e-mail, we need to change the output type that logwatch uses to send e-mail instead. We could do this through the configuration file above, but that would apply to every time it is run -- even when we run it manually and want to see the output to the screen. Instead, we'll change the cron job that executes logwatch to send e-mail. This way, when run manually, we'll still get output tostdout
and when run by cron, it'll send an e-mail. We'll also make sure it checks for all services, and change the output format to html so it's easier to read regardless of what the configuration file says. In the file/etc/cron.daily/00logwatch
find the execute line and change it to:/usr/sbin/logwatch --output mail --format html --mailto root --range yesterday --service all
#!/bin/bash #Check if removed-but-not-purged test -x /usr/share/logwatch/scripts/logwatch.pl || exit 0 #execute /usr/sbin/logwatch --output mail --format html --mailto root --range yesterday --service all #Note: It's possible to force the recipient in above command #Just pass --mailto address@a.com instead of --output mail
sudo sed -i -r -e "s,^($(sudo which logwatch).*?),# \1 # commented by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")\n$(sudo which logwatch) --output mail --format html --mailto root --range yesterday --service all # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")," /etc/cron.daily/00logwatch
-
You can test the cron job by executing it:
sudo /etc/cron.daily/00logwatch
Note: If logwatch fails to deliver mail due to the e-mail having long lines please check https://blog.dhampir.no/content/exim4-line-length-in-debian-stretch-mail-delivery-failed-returning-message-to-sender as documented in issue #29. If you you followed Configure Gmail As MTA With Implicit TLS then we already took care of this in step #7.
Call me paranoid, and you don't have to agree, but I want to deny all traffic in and out of my server except what I explicitly allow. Why would my server be sending traffic out that I don't know about? And why would external traffic be trying to access my server if I don't know who or what it is? When it comes to good security, my opinion is to reject/deny by default, and allow by exception.
Of course, if you disagree, that is totally fine and can configure UFW to suit your needs.
Either way, ensuring that only traffic we explicitly allow is the job of a firewall. On Linux, the most common firewall is iptables. iptables, however, is rather complicated and confusing (IMHO). This is where UFW comes in. UFW simplifies the process of creating and managing iptables rules.
UFW works by letting you configure rules that:
- allow or deny
- input or output traffic
- to or from ports
You can create rules by explicitly specifying the ports or with application configurations that specify the ports.
WIP
- all network traffic, input and output, blocked except those we explicitly allow
- As you install other programs, you'll need to enable the necessary ports/applications.
-
Install ufw.
On Debian based systems:
sudo apt install ufw
-
Deny all outgoing traffic:
sudo ufw default deny outgoing comment 'deny all outgoing traffic'
Default outgoing policy changed to 'deny' (be sure to update your rules accordingly)
If you are not as paranoid as me, and don't want to deny all outgoing traffic, you can allow it instead:
sudo ufw default allow outgoing comment 'allow all outgoing traffic'
-
Deny all incoming traffic:
sudo ufw default deny incoming comment 'deny all incoming traffic'
-
Obviously we want SSH connections in:
sudo ufw limit in ssh comment 'allow SSH connections in'
Rules updated Rules updated (v6)
-
Allow additional traffic as per your needs. Some common use-cases:
# allow traffic out on port 53 -- DNS sudo ufw allow out 53 comment 'allow DNS calls out' # allow traffic out on port 123 -- NTP sudo ufw allow out 123 comment 'allow NTP out' # allow traffic out for HTTP, HTTPS, or FTP # apt might needs these depending on which sources you're using sudo ufw allow out http comment 'allow HTTP traffic out' sudo ufw allow out https comment 'allow HTTPS traffic out' sudo ufw allow out ftp comment 'allow FTP traffic out' # allow whois sudo ufw allow out whois comment 'allow whois' # allow traffic out on port 68 -- the DHCP client # you only need this if you're using DHCP sudo ufw allow out 68 comment 'allow the DHCP client to update'
-
Start ufw:
sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)? y Firewall is active and enabled on system startup
-
If you want to see a status:
sudo ufw status
Status: active To Action From -- ------ ---- 22/tcp LIMIT Anywhere # allow SSH connections in 22/tcp (v6) LIMIT Anywhere (v6) # allow SSH connections in 53 ALLOW OUT Anywhere # allow DNS calls out 123 ALLOW OUT Anywhere # allow NTP out 80/tcp ALLOW OUT Anywhere # allow HTTP traffic out 443/tcp ALLOW OUT Anywhere # allow HTTPS traffic out 21/tcp ALLOW OUT Anywhere # allow FTP traffic out Mail submission ALLOW OUT Anywhere # allow mail out 43/tcp ALLOW OUT Anywhere # allow whois 53 (v6) ALLOW OUT Anywhere (v6) # allow DNS calls out 123 (v6) ALLOW OUT Anywhere (v6) # allow NTP out 80/tcp (v6) ALLOW OUT Anywhere (v6) # allow HTTP traffic out 443/tcp (v6) ALLOW OUT Anywhere (v6) # allow HTTPS traffic out 21/tcp (v6) ALLOW OUT Anywhere (v6) # allow FTP traffic out Mail submission (v6) ALLOW OUT Anywhere (v6) # allow mail out 43/tcp (v6) ALLOW OUT Anywhere (v6) # allow whois
or
sudo ufw status verbose
Status: active Logging: on (low) Default: deny (incoming), deny (outgoing), disabled (routed) New profiles: skip To Action From -- ------ ---- 22/tcp LIMIT IN Anywhere # allow SSH connections in 22/tcp (v6) LIMIT IN Anywhere (v6) # allow SSH connections in 53 ALLOW OUT Anywhere # allow DNS calls out 123 ALLOW OUT Anywhere # allow NTP out 80/tcp ALLOW OUT Anywhere # allow HTTP traffic out 443/tcp ALLOW OUT Anywhere # allow HTTPS traffic out 21/tcp ALLOW OUT Anywhere # allow FTP traffic out 587/tcp (Mail submission) ALLOW OUT Anywhere # allow mail out 43/tcp ALLOW OUT Anywhere # allow whois 53 (v6) ALLOW OUT Anywhere (v6) # allow DNS calls out 123 (v6) ALLOW OUT Anywhere (v6) # allow NTP out 80/tcp (v6) ALLOW OUT Anywhere (v6) # allow HTTP traffic out 443/tcp (v6) ALLOW OUT Anywhere (v6) # allow HTTPS traffic out 21/tcp (v6) ALLOW OUT Anywhere (v6) # allow FTP traffic out 587/tcp (Mail submission (v6)) ALLOW OUT Anywhere (v6) # allow mail out 43/tcp (v6) ALLOW OUT Anywhere (v6) # allow whois
ufw ships with some default applications. You can see them with:
sudo ufw app list
Available applications: AIM Bonjour CIFS DNS Deluge IMAP IMAPS IPP KTorrent Kerberos Admin Kerberos Full Kerberos KDC Kerberos Password LDAP LDAPS LPD MSN MSN SSL Mail submission NFS OpenSSH POP3 POP3S PeopleNearby SMTP SSH Socks Telnet Transmission Transparent Proxy VNC WWW WWW Cache WWW Full WWW Secure XMPP Yahoo qBittorrent svnserve
To get details about the app, like which ports it includes, type:
sudo ufw app info [app name]
sudo ufw app info DNSProfile: DNS Title: Internet Domain Name Server Description: Internet Domain Name Server Port: 53
If you don't want to create rules by explicitly providing the port number(s), you can create your own application configurations. To do this, create a file in /etc/ufw/applications.d
.
For example, here is what you would use for Plex:
cat /etc/ufw/applications.d/plexmediaserver
[PlexMediaServer] title=Plex Media Server description=This opens up PlexMediaServer for http (32400), upnp, and autodiscovery. ports=32469/tcp|32413/udp|1900/udp|32400/tcp|32412/udp|32410/udp|32414/udp|32400/udp
Then you can enable it like any other app:
sudo ufw allow plexmediaserver
I can't explain it any better than user FINESEC from https://serverfault.com/ did at: https://serverfault.com/a/447604/289829.
Fail2BAN scans log files of various applications such as apache, ssh or ftp and automatically bans IPs that show the malicious signs such as automated login attempts. PSAD on the other hand scans iptables and ip6tables log messages (typically /var/log/messages) to detect and optionally block scans and other types of suspect traffic such as DDoS or OS fingerprinting attempts. It's ok to use both programs at the same time because they operate on different level.
And, since we're already using UFW so we'll follow the awesome instructions by netson at https://gist.github.com/netson/c45b2dc4e835761fbccc to make PSAD work with UFW.
WIP
- http://www.cipherdyne.org/psad/
- http://www.cipherdyne.org/psad/docs/config.html
- https://www.thefanclub.co.za/how-to/how-install-psad-intrusion-detection-ubuntu-1204-lts-server
- https://serverfault.com/a/447604/289829
- https://serverfault.com/a/770424/289829
- https://gist.github.com/netson/c45b2dc4e835761fbccc-
-
Install psad.
On Debian based systems:
sudo apt install psad
-
Make a backup of psad's configuration file
/etc/psad/psad.conf
:sudo cp --preserve /etc/psad/psad.conf /etc/psad/psad.conf.$(date +"%Y%m%d%H%M%S")
-
Review and update configuration options in
/etc/psad/psad.conf
. Pay special attention to these:Setting Set To EMAIL_ADDRESSES
your email address(s) HOSTNAME
your server's hostname ENABLE_AUTO_IDS
ENABLE_AUTO_IDS Y;
ENABLE_AUTO_IDS_EMAILS
ENABLE_AUTO_IDS_EMAILS Y;
EXPECT_TCP_OPTIONS
EXPECT_TCP_OPTIONS Y;
Check the configuration file psad's documentation at http://www.cipherdyne.org/psad/docs/config.html for more details.
-
Now we need to make some changes to ufw so it works with psad by telling ufw to log all traffic so psad can analyze it. Do this by editing two files and adding these lines at the end but before the COMMIT line.
Make backups:
sudo cp --preserve /etc/ufw/before.rules /etc/ufw/before.rules.$(date +"%Y%m%d%H%M%S") sudo cp --preserve /etc/ufw/before6.rules /etc/ufw/before6.rules.$(date +"%Y%m%d%H%M%S")
Edit the files:
/etc/ufw/before.rules
/etc/ufw/before6.rules
And add add this at the end but before the COMMIT line:
# log all traffic so psad can analyze -A INPUT -j LOG --log-tcp-options --log-prefix "[IPTABLES] " -A FORWARD -j LOG --log-tcp-options --log-prefix "[IPTABLES] "
Note: We're adding a log prefix to all the iptables logs. We'll need this for seperating iptables logs to their own file.
For example:
... # log all traffic so psad can analyze -A INPUT -j LOG --log-tcp-options --log-prefix "[IPTABLES] " -A FORWARD -j LOG --log-tcp-options --log-prefix "[IPTABLES] " # don't delete the 'COMMIT' line or these rules won't be processed COMMIT
-
Now we need to reload/restart ufw and psad for the changes to take effect:
sudo ufw reload sudo psad -R sudo psad --sig-update sudo psad -H
-
Analyze iptables rules for errors:
sudo psad --fw-analyze
[+] Parsing INPUT chain rules. [+] Parsing INPUT chain rules. [+] Firewall config looks good. [+] Completed check of firewall ruleset. [+] Results in /var/log/psad/fw_check [+] Exiting.
Note: If there were any issues you will get an e-mail with the error.
-
Check the status of psad:
sudo psad --Status
[-] psad: pid file /var/run/psad/psadwatchd.pid does not exist for psadwatchd on vm [+] psad_fw_read (pid: 3444) %CPU: 0.0 %MEM: 2.2 Running since: Sat Feb 16 01:03:09 2019 [+] psad (pid: 3435) %CPU: 0.2 %MEM: 2.7 Running since: Sat Feb 16 01:03:09 2019 Command line arguments: [none specified] Alert email address(es): root@localhost [+] Version: psad v2.4.3 [+] Top 50 signature matches: [NONE] [+] Top 25 attackers: [NONE] [+] Top 20 scanned ports: [NONE] [+] iptables log prefix counters: [NONE] Total protocol packet counters: [+] IP Status Detail: [NONE] Total scan sources: 0 Total scan destinations: 0 [+] These results are available in: /var/log/psad/status.out
A firewall will board up all the doors and windows you don't want anyone using so nobody can see they are even there. But what about the doors and windows you want visible so approved folks can use them? Even if the door is locked, how do you ensure that someone doesn't try to force their way in?
That is where Fail2ban comes in. It will monitor network traffic/logs and prevent intrusions by blocking suspicious activity (e.g. multiple successive failed connections in a short time-span).
WIP
- network monitoring for suspicious activity with automatic banning of offending IPs
- As of right now, the only thing running on this server is SSH so we'll want Fail2ban to monitor SSH and ban as necessary.
- As you install other programs, you'll need to create/configure the appropriate jails and enable them.
- https://www.fail2ban.org/
- https://blog.vigilcode.com/2011/05/ufw-with-fail2ban-quick-secure-setup-part-ii/
- https://dodwell.us/security/ufw-fail2ban-portscan.html
- https://www.howtoforge.com/community/threads/fail2ban-and-ufw-on-debian.77261/
-
Install fail2ban.
On Debian based systems:
sudo apt install fail2ban
-
We don't want to edit
/etc/fail2ban/fail2ban.conf
or/etc/fail2ban/jail.conf
because a future update may overwrite those so we'll create a local copy instead. Create the file/etc/fail2ban/jail.local
and add this to it after replacing[LAN SEGMENT]
and[your email]
with the appropriate values:[DEFAULT] # the IP address range we want to ignore ignoreip = 127.0.0.1/8 [LAN SEGMENT] # who to send e-mail to destemail = [your e-mail] # who is the email from sender = [your e-mail] # since we're using exim4 to send emails mta = mail # get email alerts action = %(action_mwl)s
Note: Your server will need to be able to send e-mails so Fail2ban can let you know of suspicious activity and when it banned an IP.
-
We need to create a jail for ssh that tells fail2ban to look at ssh logs and use ufw to ban/unban IPs as needed. Create a jail for ssh by creating the file
/etc/fail2ban/jail.d/ssh.local
and adding this to it:[sshd] enabled = true banaction = ufw port = ssh filter = sshd logpath = %(sshd_log)s maxretry = 5
cat << EOF | sudo tee /etc/fail2ban/jail.d/ssh.local [sshd] enabled = true banaction = ufw port = ssh filter = sshd logpath = %(sshd_log)s maxretry = 5 EOF
-
In the above we tell fail2ban to use the ufw as the
banaction
. Fail2ban ships with an action configuration file for ufw. You can see it in/etc/fail2ban/action.d/ufw.conf
-
Enable fail2ban and the jail for SSH:
sudo fail2ban-client start sudo fail2ban-client reload sudo fail2ban-client add sshd
-
To check the status:
sudo fail2ban-client status
Status |- Number of jail: 1 `- Jail list: sshd
sudo fail2ban-client status sshd
Status for the jail: sshd |- Filter | |- Currently failed: 0 | |- Total failed: 0 | `- File list: /var/log/auth.log `- Actions |- Currently banned: 0 |- Total banned: 0 `- Banned IP list:
I have not needed to create a custom jail yet. Once I do, and I figure out how, I will update this guide. Or, if you know how please help contribute.
To unban an IP use this command:
fail2ban-client set [jail] unbanip [IP]
[jail]
is the name of the jail that has the banned IP and [IP]
is the IP address you want to unban. For example, to unaban 192.168.1.100
from SSH you would do:
fail2ban-client set sshd unbanip 192.168.1.100
This sections cover things that are high risk because there is a possibility they can make your system unusable, or are considered unnecessary by many because the risks outweigh any rewards.
!! PROCEED AT YOUR OWN RISK !!
!! PROCEED AT YOUR OWN RISK !!
- Linux Kernel sysctl Hardening
- Password Protect GRUB
- Disable Root Login
- Change Default umask
- Orphaned Software
!! PROCEED AT YOUR OWN RISK !!
The kernel is the brains of a Linux system. Securing it just makes sense.
Changing kernel settings with sysctl is risky and could break your server. If you don't know what you are doing, don't have the time to debug issues, or just don't want to take the risks, I would advise from not following these steps.
I am not as knowledgeable about hardening/securing a Linux kernel as I'd like. As much as I hate to admit it, I do not know what all of these settings do. My understanding is that most of them are general kernel hardening and performance, and the others are to protect against spoofing and DOS attacks.
In fact, since I am not 100% sure exactly what each setting does, I took recommended settings from numerous sites (all linked in the references below) and combined them to figure out what should be set. I figure if multiple reputable sites mention the same setting, it's probably safe.
If you have a better understanding of what these settings do, or have any other feedback/advice on them, please let me know.
I won't provide For the lazy code in this section.
- Documentation on all the sysctl settings/keys is severely lacking. The documentation I can find seems to reference the 2.2 version kernel. I could not find anything newer. If you know where I can, please let me know.
- The reference sites listed below have more comments on what each setting does.
- https://github.com/torvalds/linux/tree/master/Documentation
- https://www.cyberciti.biz/faq/linux-kernel-etcsysctl-conf-security-hardening/
- https://geektnt.com/sysctl-conf-hardening.html
- https://linoxide.com/how-tos/linux-server-protection/
- https://github.com/klaver/sysctl/blob/master/sysctl.conf
- https://cloudpro.zone/index.php/2018/01/30/debian-9-3-server-setup-guide-part-5/
-
The sysctl settings can be found in the linux-kernel-sysctl-hardening.md file in this repo.
-
Before you make a kernel sysctl change permanent, you can test it with the sysctl command:
sudo sysctl -w [key=value]
Example:
sudo sysctl -w kernel.ctrl-alt-del=0
Note: There are no spaces in
key=value
, including before and after the space. -
Once you have tested a setting, and made sure it works without breaking your server, you can make it permanent by adding the values to
/etc/sysctl.conf
. For example:$ sudo cat /etc/sysctl.conf kernel.ctrl-alt-del = 0 fs.file-max = 65535 ... kernel.sysrq = 0
-
After updating the file you can reload the settings or reboot. To reload:
sudo sysctl -p
Note: If sysctl has trouble writing any settings then sysctl -w
or sysctl -p
will write an error to stderr. You can use this to quickly find invalid settings in your /etc/sysctl.conf
file:
sudo sysctl -p >/dev/null
!! PROCEED AT YOUR OWN RISK !!
If a bad actor has physical access to your server, they could use GRUB to gain unauthorized access to your system.
If you forget the password, you'll have to go through some work to recover the password.
- auto boot the default Debian install and require a password for anything else
- This will only protect GRUB and anything behind it like your operating systems. Check your motherboard's documentation for password protecting your BIOS to prevent a bad actor from circumventing GRUB.
- https://selivan.github.io/2017/12/21/grub2-password-for-all-but-default-menu-entries.html
- https://help.ubuntu.com/community/Grub2/Passwords
- https://computingforgeeks.com/how-to-protect-grub-with-password-on-debian-ubuntu-and-kali-linux/
man grub
man grub-mkpasswd-pbkdf2
-
Create a Password-Based Key Derivation Function 2 (PBKDF2) hash of your password:
grub-mkpasswd-pbkdf2 -c 100000
The below output is from using
password
as the password:Enter password: Reenter password: PBKDF2 hash of your password is grub.pbkdf2.sha512.100000.2812C233DFC899EFC3D5991D8CA74068C99D6D786A54F603E9A1EFE7BAEDDB6AA89672F92589FAF98DB9364143E7A1156C9936328971A02A483A84C3D028C4FF.C255442F9C98E1F3C500C373FE195DCF16C56EEBDC55ABDD332DD36A92865FA8FC4C90433757D743776AB186BD3AE5580F63EF445472CC1D151FA03906D08A6D
-
Copy everything after
PBKDF2 hash of your password is
, starting from and includinggrub.pbkdf2.sha512...
to the end. You'll need this in the next step. -
The
update-grub
program uses scripts to generate configuration files it will use for GRUB's settings. Create the file/etc/grub.d/01_password
and add the below code after replacing[hash]
with the hash you copied from the first step. This tellsupdate-grub
to use this username and password for GRUB.#!/bin/sh set -e cat << EOF set superusers="grub" password_pbkdf2 grub [hash] EOF
For example:
#!/bin/sh set -e cat << EOF set superusers="grub" password_pbkdf2 grub grub.pbkdf2.sha512.100000.2812C233DFC899EFC3D5991D8CA74068C99D6D786A54F603E9A1EFE7BAEDDB6AA89672F92589FAF98DB9364143E7A1156C9936328971A02A483A84C3D028C4FF.C255442F9C98E1F3C500C373FE195DCF16C56EEBDC55ABDD332DD36A92865FA8FC4C90433757D743776AB186BD3AE5580F63EF445472CC1D151FA03906D08A6D EOF
-
Set the file's execute bit so
update-grub
includes it when it updates GRUB's configuration:sudo chmod a+x /etc/grub.d/01_password
-
Make a backup of GRUB's configuration file
/etc/grub.d/10_linux
that we'll be modifying and unset the execute bit soupdate-grub
doesn't try to run it:sudo cp --preserve /etc/grub.d/10_linux /etc/grub.d/10_linux.$(date +"%Y%m%d%H%M%S") sudo chmod a-x /etc/grub.d/10_linux.*
-
To make the default Debian install unrestricted (without the password) while keeping everything else restricted (with the password) modify
/etc/grub.d/10_linux
and add--unrestricted
to theCLASS
variable.sudo sed -i -r -e "/^CLASS=/ a CLASS=\"\${CLASS} --unrestricted\" # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" /etc/grub.d/10_linux
-
Update GRUB with
update-grub
:sudo update-grub
!! PROCEED AT YOUR OWN RISK !!
If you have sudo configured properly, then the root account will mostly never need to log in directly -- either at the terminal or remotely.
Be warned, this can cause issues with some configurations!
If your installation uses sulogin
(like Debian) to drop to a root console during boot failures, then locking the root account will prevent sulogin
from opening the root shell and you will get this error:
Cannot open access to console, the root account is locked.
See sulogin(8) man page for more details.
Press Enter to continue.
To work around this, you can use the --force
option for sulogin
. Some distributions already include this, or some other, workaround.
An alternative to locking the root acount is set a long/complicated root password and store it in a secured, non digital format. That way you have it when/if you need it.
- locked root account that nobody can use to log in as root
- Some distributions disable root login by default (e.g. Ubuntu) so you may not need to do this step. Check with your distribution's documentation.
- https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=806852
- systemd/systemd#7115
- https://github.com/karelzak/util-linux/commit/7ff1162e67164cb4ece19dd809c26272461aa254
- systemd/systemd#11596
- https://www.reddit.com/r/selfhosted/comments/aoxd4l/new_guide_created_by_me_how_to_secure_a_linux/eg4rkfi/
man systemd
-
Lock the root account:
sudo passwd -l root
!! PROCEED AT YOUR OWN RISK !!
umask controls the default permissions of files/folders when they are created. Insecure file/folder permissions give other accounts potentially unauthorized access to your data. This may include the ability to make configuration changes.
- For non-root accounts, there is no need for other accounts to get any access to the account's files/folders by default.
- For the root account, there is no need for the file/folder primary group or other accounts to have any access to root's files/folders by default.
When and if other accounts need access to a file/folder, you want to explicitly grant it using a combination of file/folder permissions and primary group.
Changing the default umask can create unexpected problems. For example, if you set umask to 0077
for root, then non-root accounts will not have access to application configuration files/folders in /etc/
which could break applications that do not run with root privileges.
In order to explain how umask works I'd have to explain how Linux file/folder permissions work. As that is a rather complicated question, I will defer you to the references below for further reading.
- set default umask for non-root accounts to 0027
- set default umask for the root account to 0077
- umask is a Bash built-in which means a user can change their own umask setting.
- https://www.linuxnix.com/umask-define-linuxunix/
- https://serverfault.com/questions/818783/which-umask-is-more-secure-in-linux-022-or-027
- https://www.cyberciti.biz/tips/understanding-linux-unix-umask-value-usage.html
man umask
-
Make a backup of files we'll be editing:
sudo cp --preserve /etc/profile /etc/profile.$(date +"%Y%m%d%H%M%S") sudo cp --preserve /etc/bash.bashrc /etc/bash.bashrc.$(date +"%Y%m%d%H%M%S") sudo cp --preserve /etc/login.defs /etc/login.defs.$(date +"%Y%m%d%H%M%S") sudo cp --preserve /root/.bashrc /root/.bashrc.$(date +"%Y%m%d%H%M%S")
-
Set default umask for non-root accounts to 0027 by adding this line to
/etc/profile
and/etc/bash.bashrc
:umask 0027
echo -e "\numask 0027 # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /etc/profile /etc/bash.bashrc
-
We also need to add this line to
/etc/login.defs
:UMASK 0027
echo -e "\nUMASK 0027 # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /etc/login.defs
-
Set default umask for the root account to 0077 by adding this line to
/root/.bashrc
:umask 0077
echo -e "\numask 0077 # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /root/.bashrc
!! PROCEED AT YOUR OWN RISK !!
As you use your system, and you install and uninstall software, you'll eventually end up with orphaned, or unused software/packages/libraries. You don't need to remove them, but if you don't need them, why keep them? When security is a priority, anything not explicitly needed is a potential security threat. You want to keep your server as trimmed and lean as possible.
- Each distribution manages software/packages/libraries differently so how you find and remove orphaned packages will be different. So far I only have steps for Debian based systems.
On Debian based systems, you can use deborphan to find orphaned packages.
Keep in mind, deborphan finds packages that have no package dependencies. That does not mean they are not used. You could very well have a package you use every day that has no dependencies that you wouldn't want to remove. And, if deborphan gets anything wrong, then removing critical packages may break your system.
-
Install deborphan.
sudo apt install deborphan
-
Run deborphan as root to see a list of orphaned packages:
sudo deborphan
libxapian30 libpipeline1
-
Assuming you want to remove all of the packages deborphan finds, you can pass it's output to
apt
to remove them:sudo apt --autoremove purge $(deborphan)
WIP
From https://cisofy.com/lynis/:
Lynis is a battle-tested security tool for systems running Linux, macOS, or Unix-based operating system. It performs an extensive health scan of your systems to support system hardening and compliance testing.
- Lynis installed
- CISOFY offers packages for many distributions. Check https://packages.cisofy.com/ for distribution specific installation instructions.
- https://cisofy.com/documentation/lynis/get-started/
- https://packages.cisofy.com/community/#debian-ubuntu
- https://thelinuxcode.com/audit-lynis-ubuntu-server/
- https://www.vultr.com/docs/install-lynis-on-debian-8
-
Install lynis. https://cisofy.com/lynis/#installation has detailed instructions on how to install it for your distribution.
On Debian based systems, using CISOFY's community software repository:
sudo apt install apt-transport-https ca-certificates host sudo wget -O - https://packages.cisofy.com/keys/cisofy-software-public.key | sudo apt-key add - sudo echo "deb https://packages.cisofy.com/community/lynis/deb/ stable main" | sudo tee /etc/apt/sources.list.d/cisofy-lynis.list sudo apt update sudo apt install lynis
-
Update it:
sudo lynis update info
-
Run a security audit:
sudo lynis audit system
This will scan your server, report its audit findings, and at the end it will give you suggestions. Spend some time going through the output and address gaps as necessary.
WIP
Unless you're planning on setting up your own mail server, you'll need a way to send e-mails from your server. This will be important for system alerts/messages.
You can use any Gmail account. I recommend you create one specific for this server. That way if your server is compromised, the bad-actor won't have any passwords for your primary account. Granted, if you have 2FA/MFA enabled and you use an app password, there isn't much a bad-actor can do with just the app password, but why take the risk?
There are many guides on-line that cover how to configure Gmail as MTA using STARTTLS including a previous version of this guide. With STARTTLS, an initial unencrypted connection is made and then upgraded to an encrypted TLS or SSL connection. Instead, with the approach outlined below, an encrypted TLS connection is made from the start.
Also, as discussed in issue #29 and here, exim4 will fail for messages with long lines. We'll fix this in this section too.
mail
configured to send e-mails from your server using Gmail- long line support for exim4
- Thanks to remyabel for figuring out how to get this to work with TLS as documented in issue #24 and pull request #26.
- https://wiki.debian.org/Exim
- https://wiki.debian.org/GmailAndExim4
- https://www.exim.org/exim-html-current/doc/html/spec_html/ch-encrypted_smtp_connections_using_tlsssl.html
- https://php.quicoto.com/setup-exim4-to-use-gmail-in-ubuntu/
- https://www.fastmail.com/help/technical/ssltlsstarttls.html
- exim4 fails for messages with long lines - issue #29 and https://blog.dhampir.no/content/exim4-line-length-in-debian-stretch-mail-delivery-failed-returning-message-to-sender
-
Install exim4. You will also need openssl and ca-certificates.
On Debian based systems:
sudo apt install exim4 openssl ca-certificates
-
Configure exim4:
For Debian based systems:
sudo dpkg-reconfigure exim4-config
You'll be prompted with some questions:
Prompt Answer General type of mail configuration mail sent by smarthost; no local mail
System mail name localhost
IP-addresses to listen on for incoming SMTP connections 127.0.0.1; ::1
Other destinations for which mail is accepted (default) Visible domain name for local users localhost
IP address or host name of the outgoing smarthost smtp.gmail.com::465
Keep number of DNS-queries minimal (Dial-on-Demand)? No
Split configuration into small files? No
-
Make a backup of
/etc/exim4/passwd.client
:sudo cp --preserve /etc/exim4/passwd.client /etc/exim4/passwd.client.$(date +"%Y%m%d%H%M%S")
-
Add a line like this to
/etc/exim4/passwd.client
*.google.com:yourAccount@gmail.com:yourPassword
Notes:
- Replace
yourAccount@gmail.com
andyourPassword
with your details. If you have 2FA/MFA enabled on your Gmail then you'll need to create and use an app password here. - Always check
host smtp.gmail.com
for the most up-to-date domains to list.
- Replace
-
This file has your Gmail password so we need to lock it down:
sudo chown root:Debian-exim /etc/exim4/passwd.client sudo chmod 640 /etc/exim4/passwd.client
-
The next step is to create an TLS certificate that exim4 will use to make the encrypted connection to
smtp.gmail.com
. You can use your own certificate, like one from Let's Encrypt, or create one yourself using openssl. We will use a script that comes with exim4 that calls openssl to make our certificate:sudo bash /usr/share/doc/exim4-base/examples/exim-gencert
[*] Creating a self signed SSL certificate for Exim! This may be sufficient to establish encrypted connections but for secure identification you need to buy a real certificate! Please enter the hostname of your MTA at the Common Name (CN) prompt! Generating a RSA private key ..........................................+++++ ................................................+++++ writing new private key to '/etc/exim4/exim.key' ----- You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Code (2 letters) [US]:[redacted] State or Province Name (full name) []:[redacted] Locality Name (eg, city) []:[redacted] Organization Name (eg, company; recommended) []:[redacted] Organizational Unit Name (eg, section) []:[redacted] Server name (eg. ssl.domain.tld; required!!!) []:localhost Email Address []:[redacted] [*] Done generating self signed certificates for exim! Refer to the documentation and example configuration files over at /usr/share/doc/exim4-base/ for an idea on how to enable TLS support in your mail transfer agent.
-
Instruct exim4 to use TLS and port 465, and fix exim4's long lines issue, by creating the file
/etc/exim4/exim4.conf.localmacros
and adding:MAIN_TLS_ENABLE = 1 REMOTE_SMTP_SMARTHOST_HOSTS_REQUIRE_TLS = * TLS_ON_CONNECT_PORTS = 465 REQUIRE_PROTOCOL = smtps IGNORE_SMTP_LINE_LENGTH_LIMIT = true
cat << EOF | sudo tee /etc/exim4/exim4.conf.localmacros MAIN_TLS_ENABLE = 1 REMOTE_SMTP_SMARTHOST_HOSTS_REQUIRE_TLS = * TLS_ON_CONNECT_PORTS = 465 REQUIRE_PROTOCOL = smtps IGNORE_SMTP_LINE_LENGTH_LIMIT = true EOF
-
Make a backup of exim4's configuration file
/etc/exim4/exim4.conf.template
:sudo cp --preserve /etc/exim4/exim4.conf.template /etc/exim4/exim4.conf.template.$(date +"%Y%m%d%H%M%S")
-
Add the below to
/etc/exim4/exim4.conf.template
after the.ifdef REMOTE_SMTP_SMARTHOST_HOSTS_REQUIRE_TLS ... .endif
block:.ifdef REQUIRE_PROTOCOL protocol = REQUIRE_PROTOCOL .endif
.ifdef REMOTE_SMTP_SMARTHOST_HOSTS_REQUIRE_TLS hosts_require_tls = REMOTE_SMTP_SMARTHOST_HOSTS_REQUIRE_TLS .endif .ifdef REQUIRE_PROTOCOL protocol = REQUIRE_PROTOCOL .endif .ifdef REMOTE_SMTP_HEADERS_REWRITE headers_rewrite = REMOTE_SMTP_HEADERS_REWRITE .endif
WIP: gotta figure this out
-
Add the below to
/etc/exim4/exim4.conf.template
inside the.ifdef MAIN_TLS_ENABLE
block:.ifdef TLS_ON_CONNECT_PORTS tls_on_connect_ports = TLS_ON_CONNECT_PORTS .endif
.ifdef MAIN_TLS_ENABLE .ifdef TLS_ON_CONNECT_PORTS tls_on_connect_ports = TLS_ON_CONNECT_PORTS .endif
sudo sed -i -r -e "/\.ifdef MAIN_TLS_ENABLE/ a # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")\n.ifdef TLS_ON_CONNECT_PORTS\n tls_on_connect_ports = TLS_ON_CONNECT_PORTS\n.endif\n# end add" /etc/exim4/exim4.conf.template
-
Add the below to
/etc/exim4/exim4.conf.template
after the.ifdef REMOTE_SMTP_SMARTHOST_HOSTS_REQUIRE_TLS ... .endif
block: -
Update exim4 configuration to use TLS and then restart the service:
sudo update-exim4.conf sudo service exim4 restart
-
If you're using UFW, you'll need to allow outbound traffic on 465. To do this we'll create a custom UFW application profile and then enable it. Create the file
/etc/ufw/applications.d/smtptls
, add this, then runufw allow out smtptls comment 'open TLS port 465 for use with SMPT to send e-mails'
:[SMTPTLS] title=SMTP through TLS description=This opens up the TLS port 465 for use with SMPT to send e-mails. ports=465/tcp
cat << EOF | sudo tee /etc/ufw/applications.d/smtptls [SMTPTLS] title=SMTP through TLS description=This opens up the TLS port 465 for use with SMPT to send e-mails. ports=465/tcp EOF sudo ufw allow out smtptls comment 'open TLS port 465 for use with SMPT to send e-mails'
-
Add some mail aliases so we can send e-mails to local accounts by adding lines like this to
/etc/aliases
:user1: user1@gmail.com user2: user2@gmail.com ...
You'll need to add all the local accounts that exist on your server.
-
Test your setup:
echo "test" | mail -s "Test" email@gmail.com sudo tail /var/log/exim4/mainlog
There will come a time when you'll need to look through your iptables logs. Having all the iptables logs go to their own file will make it a lot easier to find what you're looking for.
- https://blog.shadypixel.com/log-iptables-messages-to-a-separate-file-with-rsyslog/
- https://gist.github.com/netson/c45b2dc4e835761fbccc
- https://www.rsyslog.com/doc/v8-stable/configuration/actions.html
-
The first step is by telling your firewall to prefix all log entries with some unique string. If you're using iptables directly, you would do something like
--log-prefix "[IPTABLES] "
for all the rules. We took care of this in step step 4 of installing psad. -
After you've added a prefix to the firewall logs, we need to tell rsyslog to send those lines to its own file. Do this by creating the file
/etc/rsyslog.d/10-iptables.conf
and adding this::msg, contains, "[IPTABLES] " /var/log/iptables.log & stop
If you're expecting a lot if data being logged by your firewall, prefix the filename with a
-
"to omit syncing the file after every logging". For example::msg, contains, "[IPTABLES] " -/var/log/iptables.log & stop
Note: Remember to change the prefix to whatever you use.
-
Since we're logging firewall messages to a different file, we need to tell psad where the new file is. Edit
/etc/psad/psad.conf
and setIPT_SYSLOG_FILE
to the path of the log file. For example:IPT_SYSLOG_FILE /var/log/iptables.log;
-
Restart psad and rsyslog to activate the changes (or reboot):
sudo psad -R sudo psad --sig-update sudo psad -H sudo service rsyslog restart
-
The last thing we have to do is tell logrotate to rotate the new log file so it doesn't get to big and fill up our disk. Create the file
/etc/logrotate.d/iptables
and add this:/var/log/iptables.log { rotate 7 daily missingok notifempty delaycompress compress postrotate invoke-rc.d rsyslog rotate > /dev/null endscript }
For any questions, comments, concerns, feedback, or issues, submit a new issue.
- https://github.com/pratiktri/server_init_harden - Bash script that automates few of the tasks that you need to perform on a new Linux server to give it basic amount security.
- https://www.reddit.com/r/linuxquestions/comments/aopzl7/new_guide_created_by_me_how_to_secure_a_linux/
- https://www.reddit.com/r/selfhosted/comments/aoxd4l/new_guide_created_by_me_how_to_secure_a_linux/
- https://news.ycombinator.com/item?id=19177435#19178618
- https://www.reddit.com/r/linuxadmin/comments/arx7xo/howtosecurealinuxserver_an_evolving_howto_guide/
- https://www.reddit.com/r/linux/comments/arx7st/howtosecurealinuxserver_an_evolving_howto_guide/
How To Secure A Linux Server by Anchal Nigam is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.
See LICENSE for the full license.