/Lamellar-Advent-of-code

Primary LanguageRustBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

Solutions to Advent of Code puzzles using the Lamellar Runtime.

For most these problems, there appears to exist an efficient serial implementation, limiting the benefit of a parallel (and distributed) runtime. Still, this is an effort to explore Lamellar and provide some examples on how to use the runtime!

Generally, I will implement a serial solution as well as at least one Lamellar based solution.

I utilize the cargo-aoc crate as the execution harness.

install using cargo install cargo-aoc

run using cargo aoc optionally specifying a day with -d <day>

bench using cargo aoc bench optionally specifying a day with -d <day> and including the input parsing with -g

Performance

Run in WSL on an AMD 7950x

DayPart 1 PerformancePart 2 Performance
D Implementation
1 Serial
1 Active Message
2 Serial
2 Active Message
3 Serial
3 Active Message
4 Serial
4 Active Message
5 Serial
5 Active Message
6 Serial
6 Active Message
7 Serial
7 Active Message
8 Serial
8 Lamellar Array
9 Serial
9 Active Message
10 Serial
10 Active Message
11 Serial
11 Active Message
12 Serial
12 Active Message
13 Serial
13 Active Message
14 Serial
14 Active Message
15 Serial
15 Active Message
16 Serial
16 Active Message
17 Serial
17 Active Message
Generator Runner Total
14.032 ns 16.779 µs 16.793 µs
63.054 µs 5.0559 µs 68.109 µs
13.841 ns 32.918 µs 32.931 µs
16.551 µs 10.880 µs 27.431 µs
5.4154 µs 29.827 µs 35.242 µs
24.537 µs 12.151 µs 36.688 µs
14.200 ns 270.32 µs 270.334 µs
22.012 µs 62.169 µs 84.181 µs
13.757 ns 17.769 µs 17.782 µs
13.837 ns 43.560 µs 43.573 µs
195.02 ns 14.865 ns 209.885 ns
199.93 ns 2.7972 µs 2.996 µs
13.784 ns 127.97 µs 127.98 µs
28.847 µs 159.19 µs 188.037 µs
8.8126 µs 22.189 µs 31.0 µs
42.615 µs 23.770 ms 23.812 ms
81.735 µs 23.400 µs 105.135 µs
80.600 µs 9.2678 µs 89.868 µs
14.266 ns 71.391 µs 71.40 µs
14.031 ns 161.86 µs 161.87 µs
13.945 ns 50.208 µs
13.986 ns 27.313 µs
13.806 ns 332.89 µs 332.90 µs
13.950 ns 190.53 µs 190.54 µs
47.878 µs 22.416 µs 70.294 µs
111.10 µs 10.529 µs 121.629 µs
13.949 ns 8.9763 µs 8.9893 µs
14.015 ns 26.257 µs 26.271 µs
13.783 ns 22.018 µs 22.031 µs
110.73 µs 4.0274 µs 114.75 µs
22.668 µs 466.67 µs 489.34 µs
23.969 µs 676.32 µs 700.29 µs
21.387 µs 95.200 ms 95.221 ms
20.865 µs 317.46 ms 317.48 ms
Generator Runner Total
14.011 ns 283.80 µs 283.81 µs
72.646 µs 60.733 µs 133.37 µs
13.786 ns 33.285 µs 33.298 µs
16.181 µs 9.4443 µs 27.625 µs
5.1958 µs 37.210 µs 42.405 µs
24.124 µs 11.453 µs 35.177 µs
13.715 ns 299.45 µs 313.165 µs
21.927 µs 78.105 µs 100.032 µs
13.779 ns 38.057 µs 38.070 µs
14.019 ns 54.063 µs 54.077 µs
145.28 ns 4.8219 ns 150.1 ns
146.73 ns 789.15 ns 935.8 ns
13.800 ns 148.86 µs 148.87 µs
29.071 µs 165.84 µs 183.91 µs
9.1250 µs 154.30 µs 163.42 µs
69.443 µs 66.549 ms 66.62 ms
80.005 µs 30.690 µs 110.690 µs
80.010 µs 56.556 µs 136.566 µs
14.084 ns 225.58 µs 225.59 µs
14.043 ns 180.32 µs 180.33 µs
14.030 ns 50.487 µs
14.020 ns 27.679 µs
14.052 ns 20.596 ms 20.596 ms
13.889 ns 5.561 ms 5.561 ms
49.435 µs 134.58 µs 183.493 µs
112.14 µs 51.599 µs 163.739 µs
14.087 ns 3.4685 ms 3.4685 ms
14.069 ns 6.5674 ms 6.5674 ms
13.834 ns 113.54 µs 113.55 µs
149.66 µs 34.455 µs 184.02 µs
25.022 µs 129.08 ms 129.1 ms
22.919 µs 26.667 ms 26.689 ms
21.871 µs µs 336.22 ms 336.24 ms
20.801 µs 1.1098 s 1.1098 s