/refrakt_core

The core implementation repository behind Refrakt.

Primary LanguagePythonMIT LicenseMIT

About

refrakt_core is a modular deep learning and machine learning research framework for computer vision, designed for rapid experimentation, extensibility, and reproducibility. It now features a robust, thread-safe registry system, dynamic dataset handling, advanced image resizing, flexible hyperparameter overrides, and comprehensive logging and testing. Refrakt supports both classic and modern CV/ML papers, and enables seamless ML/DL/fusion pipelines.

This project aims to unify, extend, and visualize foundational and modern architectures through clean code, clear abstractions, and rigorous logging.

๐Ÿš€ Key Features

  • Safe Registry System: Thread-safe, import-safe, decorator-based registration for models, datasets, losses, trainers, and transforms. Backward compatible with legacy code.
  • Dynamic Dataset Loader: Load datasets from custom zip files or torchvision, with automatic format detection (GAN, supervised, contrastive) and size validation.
  • Standard Image Resizer/Transforms: Multiple resize strategies (maintain aspect, crop, stretch), size validation, and tensor/PIL support.
  • Hyperparameter Overrides: Override any config parameter from the command line or programmatically for fast experimentation.
  • Improved Logging: Context-aware logging with better error handling, supporting both TensorBoard and Weights & Biases (W&B).
  • Comprehensive Testing: Smoke, sanity, unit, and integration tests for all major features.
  • ML/DL/Fusion Pipelines: Support for pure-ML, pure-DL, and hybrid fusion pipelines (e.g., deep feature extraction + ML fusion head).
  • Modular YAML Configs: All components (model, trainer, loss, optimizer, scheduler, feature engineering) are defined in modular YAML files.

๐Ÿ“š Implemented Papers

  • Vision Transformer (ViT) โ€“ An Image is Worth 16x16 Words
  • ResNet โ€“ Deep Residual Learning for Image Recognition
  • Autoencoders โ€“ Learning Representations via Reconstruction
  • Swin Transformer โ€“ Hierarchical Vision Transformer with Shifted Windows
  • Attention is All You Need
  • ConvNeXt โ€“ A ConvNet for the 2020s
  • SRGAN โ€“ Photo-Realistic Single Image Super-Resolution with GANs
  • SimCLR โ€“ A Simple Framework for Contrastive Learning
  • DINO โ€“ Self-Supervised Vision Transformers
  • MAE โ€“ Masked Autoencoders
  • MSN โ€“ Masked Siamese Networks

โš™๏ธ Setup

# For pip install
pip install refrakt_core
# Manual setup
git clone https://github.com/refrakt-hub/refrakt_core.git
cd refrakt_core

# Create and activate a virtual environment
conda create -n refrakt python=3.10 -y
conda activate refrakt

# Install dependencies
pip install -r requirements.txt

GPU/cuML Support

If you want to use GPU-accelerated ML features (cuML), you must manually install the required dependencies after the main install. Run one of the following scripts from the project root:

# For bash users:
./install_cuml.sh

# For fish shell users:
./install_cuml.fish

This will install the appropriate cuML and RAPIDS libraries for your environment. If you do not need GPU/cuML support, you can skip this step.

๐Ÿ”ง Config Structure (YAML)

All components are defined in modular YAML files under refrakt_core/config/.

runtime:
  mode: pipeline
  log_type: []

dataset:
  name: MNIST
  params:
    root: ./data
    train: true
    download: true
  transform:
    - name: Resize
      params: { size: [28, 28] }
    - name: ToTensor
    - name: Normalize
      params:
        mean: [0.1307]
        std: [0.3081]

dataloader:
  params:
    batch_size: 32
    shuffle: true
    num_workers: 4
    drop_last: false

model:
  name: vit
  wrapper: vit
  params:
    in_channels: 1
    num_classes: 10
    image_size: 28
    patch_size: 7
  fusion:
    type: cuml
    model: logistic_regression
    params:
      C: 1.0
      penalty: l2
      solver: qn
      max_iter: 1000

loss:
  name: ce_wrapped
  mode: logits
  params: {}

optimizer:
  name: adamw
  params:
    lr: 0.0003

scheduler: null

trainer:
  name: supervised
  params:
    save_dir: "./checkpoints"
    num_epochs: 1
    device: cuda

๐Ÿงฉ Major Components & Patterns

1. Safe Registry System

Register models, datasets, losses, trainers, and transforms using decorators:

from refrakt_core.registry.safe_registry import register_model, get_model

@register_model("my_model")
class MyModel(torch.nn.Module):
    ...

model_cls = get_model("my_model")
model = model_cls()

2. Dynamic Dataset Loader

Load datasets from zip files or torchvision, with format detection:

from refrakt_core.loaders.dataset_loader import load_dataset
train_dataset, val_dataset = load_dataset("path/to/dataset.zip")
train_dataset, val_dataset = load_dataset("mnist")

3. Standard Image Resizer/Transforms

from refrakt_core.resizers.standard_transforms import create_standard_transform
transform = create_standard_transform(target_size=(224, 224), resize_strategy="maintain_aspect")

4. Hyperparameter Overrides

Override any config value from the command line or programmatically:

python train.py --config config.yaml model.name=ResNet optimizer.lr=0.001

5. ML/DL/Fusion Pipelines

Supports pure-ML, pure-DL, and hybrid fusion pipelines (deep features + ML head):

from refrakt_core.api.builders.model_builder import build_model
model = build_model(cfg=config, modules=modules, device="cuda", overrides=["model.params.lr=0.0005"])

๐Ÿ“ˆ Logging & Monitoring

  • TensorBoard: logs in logs/<model_name>/tensorboard/
  • Weights & Biases: auto-logged if enabled in config
tensorboard --logdir=./logs/<model_name>/tensorboard/
export WANDB_API_KEY=your_key_here

๐Ÿงฑ Project Structure

refrakt_core/
โ”œโ”€โ”€ api/                  # CLI: train.py, test.py, inference.py
โ”‚   โ””โ”€โ”€ builders/         # Builders for models, losses, optimizers, datasets
โ”œโ”€โ”€ config/               # YAML configurations for each experiment
โ”œโ”€โ”€ losses/               # Contrastive, GAN, MAE, VAE, etc.
โ”œโ”€โ”€ models/               # Vision architectures (ViT, ResNet, MAE, etc.)
โ”‚   โ””โ”€โ”€ templates/        # Base model templates and abstractions
โ”œโ”€โ”€ trainer/              # Task-specific training logic (SimCLR, SRGAN, etc.)
โ”œโ”€โ”€ registry/             # Safe, decorator-based plugin system
โ”œโ”€โ”€ utils/                # Helper modules (encoders, decoders, data classes)
โ”œโ”€โ”€ resizers/             # Image resizing and standard transforms
โ”œโ”€โ”€ loaders/              # Dynamic and standard dataset loaders
โ”œโ”€โ”€ transforms.py         # Data augmentation logic
โ”œโ”€โ”€ datasets.py           # Dataset definitions and loader helpers
โ”œโ”€โ”€ logging_config.py     # Logger wrapper for stdout + W&B/TensorBoard

๐Ÿงช Testing

Run all tests:

pytest tests/

๐Ÿงฉ Extending Refrakt

Add a New Model

  1. Create the architecture in models/your_model.py
  2. Inherit from a base class in models/templates/models.py
  3. Register it using:
from refrakt_core.registry.model_registry import register_model

@register_model("your_model")
class YourModel(BaseClassifier):
    ...
  1. Add a YAML config: config/your_model.yaml
  2. Write a custom trainer if needed (trainer/your_model.py)

Add a Custom Dataset Loader or Transform

  • Implement in loaders/ or resizers/
  • Register with the safe registry

๐Ÿ” Example Output

  • Progress bar (via tqdm)
  • Metrics printed and logged
  • ./logs/<model_name>/ with TensorBoard events
  • W&B dashboard if enabled

๐Ÿ“ฌ Contributing

  1. Clone and install:
    git clone ...
    pip install -r requirements-dev.txt
    pre-commit install
  2. Follow formatting (black, isort, pylint)
  3. Write tests for any new feature
  4. Run:
    pytest tests/

PRs and issues are welcome!

๐Ÿ”ญ Future Scope

Milestone Description
โœ… Stage 1 Paper re-implementations in notebooks
โœ… Stage 2 Modular training + model pipelines
โœ… Stage 3 Python library (refrakt train, etc.)
๐Ÿ”œ Stage 4 TBD

Planned additions:

  • Much better code readability + extensive documentation (readthedocs)
  • More sklearn and cuML models made available through the registry.
  • Integration of Kolmogorov-Arnold Networks and Lagrangian Neural Networks.
  • Checkpoints for pre-trained weights of models saved.
  • Integrate model tracing for Fusion Blocks.
  • Allow for generative / latent fusion trainng.

๐Ÿ“„ License

This repository is licensed under the MIT License. See LICENSE for full details.

๐Ÿ‘ค Maintainer

Akshath Mangudi If you find issues, raise them. If you learn from this, share it. Built with love and curiosity :)

๐Ÿค Contributing

We welcome contributions! To get started:

  • See CONTRIBUTING.md for detailed guidelines, including development setup, code style, and testing.
  • Set up your dev environment with:
    pip install -e .[dev]
    # or
    python scripts/dev_setup.py
  • This will install all runtime and development dependencies (testing, linting, formatting, type checking, etc.) and set up pre-commit hooks for code quality.
  • Please ensure your code passes all pre-commit checks and tests before opening a pull request.