/finufft

Non-uniform fast Fourier transform library of types 1,2,3 in dimensions 1,2,3

Primary LanguageC++OtherNOASSERTION

Flatiron Institute Nonuniform Fast Fourier Transform library: FINUFFT

Actions status

Principal author Alex H. Barnett, main co-developers Jeremy F. Magland, Ludvig af Klinteberg, Yu-hsuan "Melody" Shih, Andrea Malleo, Libin Lu, and Joakim Andén; see docs/ackn.rst for full list of contributors. ​

This is a lightweight library to compute the three standard types of nonuniform FFT to a specified precision, in one, two, or three dimensions. It is written in C++ with interfaces to C, Fortran, MATLAB/octave, Python, and (in a separate repository) Julia.

Please see the online documentation, or its local PDF equivalent, the user manual. You will also want to see example codes in the directories examples, test, fortran, matlab/test, and python/test. If you cannot compile, or pip install, try our precompiled binaries.

If you prefer to read text files, the source to generate the above documentation is in human-readable (mostly .rst) files as follows:

  • docs/install.rst : installation and compilation instructions
  • docs/dirs.rst : explanation of directories and files in the package
  • docs/math.rst : mathematical definitions
  • docs/cex.rst : example usage from C++/C
  • docs/c.rst : documentation of C++/C functions
  • docs/opts.rst : optional parameters
  • docs/error.rst : error codes
  • docs/trouble.rst : troubleshooting
  • docs/tut.rst and docs/tutorial/* : tutorial application examples
  • docs/fortran.rst : usage examples from Fortran, documentation of interface
  • docs/matlab.rst and docs/matlabhelp.raw : using the MATLAB/Octave interface
  • docs/python.rst and python/*/_interfaces.py : using the Python interface
  • docs/julia.rst : using the Julia interface
  • docs/devnotes.rst: notes/guide for developers
  • docs/related.rst : other recommended NUFFT packages
  • docs/users.rst : users of FINUFFT and dependent packages
  • docs/ackn.rst : authors and acknowledgments
  • docs/refs.rst : journal article references (ours and others)

If you find FINUFFT useful in your work, please cite this repository and our paper:

A parallel non-uniform fast Fourier transform library based on an ``exponential of semicircle'' kernel. A. H. Barnett, J. F. Magland, and L. af Klinteberg. SIAM J. Sci. Comput. 41(5), C479-C504 (2019).