/awesome-neural-sbi

Community-sourced list of papers and resources on neural simulation-based inference.

MIT LicenseMIT

Awesome Neural SBI

License: MIT Pull requests welcome

A community-sourced list of papers and resources on neural simulation-based inference, covering both methodological developments and domain applications. Given the nature of the field, the list is bound to be highly incomplete -- contributions are welcome!

Contents

Software and Resources

Code Packages and Benchmarks

  • sbi [Code] [Docs] [Paper]: General-purpose simulation-based inference toolkit.
  • sbibm [Code] [Docs] [Paper]: Simulation-based inference benchmarking framework.
  • swyft [Code] [Docs] [Paper]: Official implementation of Truncated Marginal Neural Ratio Estimation (TMNRE), a hyper-efficient, simulation-based inference technique for complex data and expensive simulators.
  • lampe [Code] [Docs]: Likelihood-free AMortized Posterior Estimation with PyTorch.
  • MadMiner [Code] [Docs] [Paper]: Machine learning–based inference toolkit for particle physics.
  • pydelfi [Code] [Docs] [Paper]: Early implementation of Density Estimation Likelihood-Free Inference (DELFI) with neural density estimators and adaptive acquisition of simulations.
  • carl [Code] [Docs] [Paper]: Early toolbox for neural network-based likelihood-free inference in Python.

Review Papers

  • The frontier of simulation-based inference [arXiv]
    Kyle Cranmer, Johann Brehmer, Gilles Louppe

Discovery and Links

Papers: Methods

Methodological and use-inspired papers. Listed in reverse-chronological order.

  • Sampling-Based Accuracy Testing of Posterior Estimators for General Inference [arXiv]
    Pablo Lemos, Adam Coogan, Yashar Hezaveh, Laurence Perreault-Levasseur

  • Misspecification-robust Sequential Neural Likelihood [arXiv]
    Ryan P. Kelly, David J. Nott, David T. Frazier, David J. Warne, Chris Drovandi

  • Monte Carlo Techniques for Addressing Large Errors and Missing Data in Simulation-based Inference [arXiv]
    Bingjie Wang, Joel Leja, Ashley Villar, Joshua S. Speagle

  • Validation Diagnostics for SBI algorithms based on Normalizing Flows [arXiv]
    Julia Linhart, Alexandre Gramfort, Pedro L. C. Rodrigues

  • Likelihood-free hypothesis testing [arXiv]
    Patrik Róbert Gerber, Yury Polyanskiy

  • Maximum Likelihood Learning of Energy-Based Models for Simulation-Based Inference [arXiv]
    Pierre Glaser, Michael Arbel, Arnaud Doucet, Arthur Gretton

  • Efficient identification of informative features in simulation-based inference [arXiv]
    Jonas Beck, Michael Deistler, Yves Bernaerts, Jakob Macke, Philipp Berens

  • Robust Neural Posterior Estimation and Statistical Model Criticism [arXiv]
    Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, Sebastian M Schmon

  • Contrastive Neural Ratio Estimation [arXiv]
    Benjamin Kurt Miller, Christoph Weniger, Patrick Forré

  • Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models [arXiv]
    Louis Sharrock, Jack Simons, Song Liu, Mark Beaumont

  • Truncated proposals for scalable and hassle-free simulation-based inference [arXiv]
    Michael Deistler, Pedro J Goncalves, Jakob H Macke

  • New Machine Learning Techniques for Simulation-Based Inference: InferoStatic Nets, Kernel Score Estimation, and Kernel Likelihood Ratio Estimation [arXiv]
    Kyoungchul Kong, Konstantin T. Matchev, Stephen Mrenna, Prasanth Shyamsundar

  • Score Modeling for Simulation-based Inference [arXiv]
    Tomas Geffner, George Papamakarios, Andriy Mnih

  • Investigating the Impact of Model Misspecification in Neural Simulation-based Inference [arXiv]
    Patrick Cannon, Daniel Ward, Sebastian M. Schmon

  • Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation [arXiv]
    Arnaud Delaunoy, Joeri Hermans, François Rozet, Antoine Wehenkel, Gilles Louppe

  • Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization [arXiv]
    Lorenzo Pacchiardi, Ritabrata Dutta

  • Simulation-Based Inference with Waldo: Confidence Regions by Leveraging Prediction Algorithms or Posterior Estimators for Inverse Problems [arXiv]
    Luca Masserano, Tommaso Dorigo, Rafael Izbicki, Mikael Kuusela, Ann B. Lee

  • Learning Optimal Test Statistics in the Presence of Nuisance Parameters [arXiv]
    Lukas Heinrich

  • GATSBI: Generative Adversarial Training for Simulation-Based Inference [arXiv]
    Poornima Ramesh, Jan-Matthis Lueckmann, Jan Boelts, Álvaro Tejero-Cantero, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke

  • Variational methods for simulation-based inference [arXiv]
    Manuel Glöckler, Michael Deistler, Jakob H. Macke

  • Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap [arXiv]
    Charita Dellaporta, Jeremias Knoblauch, Theodoros Damoulas, François-Xavier Briol

  • Flexible and efficient simulation-based inference for models of decision-making [bioRxiv]
    Jan Boelts, Jan-Matthis Lueckmann, Richard Gao, Jakob H. Macke

  • Group equivariant neural posterior estimation [arXiv]
    Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Deistler, Bernhard Schölkopf, Jakob H. Macke

  • A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful [arXiv]
    Joeri Hermans, Arnaud Delaunoy, François Rozet, Antoine Wehenkel, Volodimir Begy, Gilles Louppe

  • Arbitrary Marginal Neural Ratio Estimation for Simulation-based Inference [arXiv]
    François Rozet, Gilles Louppe

  • Likelihood-Free Frequentist Inference: Confidence Sets with Correct Conditional Coverage [arXiv]
    Niccolò Dalmasso, Luca Masserano, David Zhao, Rafael Izbicki, Ann B. Lee

  • Truncated Marginal Neural Ratio Estimation [arXiv] [Code]
    Benjamin Kurt Miller, Alex Cole, Patrick Forré, Gilles Louppe, Christoph Weniger

  • MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled Trajectories [arXiv]
    Giulio Isacchini, Natanael Spisak, Armita Nourmohammad, Thierry Mora, Aleksandra M. Walczak

  • Simulation-Based Inference with Approximately Correct Parameters via Maximum Entropy [arXiv]
    Rainier Barrett, Mehrad Ansari, Gourab Ghoshal, Andrew D White

  • Sequential Neural Posterior and Likelihood Approximation [arXiv]
    Samuel Wiqvist, Jes Frellsen, Umberto Picchini

  • Diagnostics for Conditional Density Models and Bayesian Inference Algorithms [arXiv]
    David Zhao, Niccolò Dalmasso, Rafael Izbicki, Ann B. Lee

  • HNPE: Leveraging Global Parameters for Neural Posterior Estimation [arXiv]
    Pedro L. C. Rodrigues, Thomas Moreau, Gilles Louppe, Alexandre Gramfort

  • Benchmarking Simulation-Based Inference [arXiv]
    Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke

  • Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks [arXiv]
    Niall Jeffrey, Benjamin D. Wandelt

  • Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference [arXiv]
    Maxime Vandegar, Michael Kagan, Antoine Wehenkel, Gilles Louppe

  • Neural Approximate Sufficient Statistics for Implicit Models [arXiv]
    Yanzhi Chen, Dinghuai Zhang, Michael Gutmann, Aaron Courville, Zhanxing Zhu

  • Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems [arXiv]
    Hans Kersting, Nicholas Krämer, Martin Schiegg, Christian Daniel, Michael Tiemann, Philipp Hennig

  • On Contrastive Learning for Likelihood-free Inference [arXiv]
    Conor Durkan, Iain Murray, George Papamakarios

  • Automatic Posterior Transformation for Likelihood-Free Inference [arXiv]
    David S. Greenberg, Marcel Nonnenmacher, Jakob H. Macke

  • Likelihood-free MCMC with Amortized Approximate Ratio Estimators [arXiv]
    Joeri Hermans, Volodimir Begy, Gilles Louppe

  • Dynamic Likelihood-free Inference via Ratio Estimation (DIRE) [arXiv]
    Traiko Dinev, Michael U. Gutmann

  • Likelihood-free inference with an improved cross-entropy estimator [arXiv]
    Markus Stoye, Johann Brehmer, Gilles Louppe, Juan Pavez, Kyle Cranmer

  • Mining gold from implicit models to improve likelihood-free inference [arXiv] [Code]
    Johann Brehmer, Gilles Louppe, Juan Pavez, Kyle Cranmer

  • Likelihood-free inference with emulator networks [arXiv]
    Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, Jakob H. Macke

  • Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows [arXiv] [Code]
    George Papamakarios, David C. Sterratt, Iain Murray

  • A Guide to Constraining Effective Field Theories with Machine Learning [arXiv]
    Johann Brehmer, Kyle Cranmer, Gilles Louppe, Juan Pavez

  • Fast ε-free Inference of Simulation Models with Bayesian Conditional Density Estimation [arXiv]
    George Papamakarios, Iain Murray

  • Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv]
    Kyle Cranmer, Juan Pavez, Gilles Louppe

Papers: Application

Domain application of neural simulation-based inference. Papers listed in reverse-chronological order.

Cosmology, Astrophysics, and Astronomy

  • Neural posterior estimation for exoplanetary atmospheric retrieval [arXiv]
    Malavika Vasist, François Rozet, Olivier Absil, Paul Mollière, Evert Nasedkin, Gilles Louppe

  • Debiasing Standard Siren Inference of the Hubble Constant with Marginal Neural Ratio Estimation [arXiv]
    Samuel Gagnon-Hartman, John Ruan, Daryl Haggard

  • Calibrating cosmological simulations with implicit likelihood inference using galaxy growth observables [arXiv]
    Yongseok Jo et al

  • DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation [arXiv]
    Gourav Khullar, Brian Nord, Aleksandra Ciprijanovic, Jason Poh, Fei Xu

  • Detection is truncation: studying source populations with truncated marginal neural ratio estimation [arXiv]
    Noemi Anau Montel, Christoph Weniger

  • SIMBIG : A Forward Modeling Approach To Analyzing Galaxy Clustering [arXiv]
    ChangHoon Hahn et al

  • Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference [arXiv]
    Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf

  • One never walks alone: the effect of the perturber population on subhalo measurements in strong gravitational lenses [arXiv]
    Adam Coogan, Noemi Anau Montel, Konstantin Karchev, Meiert W. Grootes, Francesco Nattino, Christoph Weniger

  • SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio EsTimation [arXiv]
    Konstantin Karchev, Roberto Trotta, Christoph Weniger

  • Inferring subhalo effective density slopes from strong lensing observations with neural likelihood-ratio estimation [arXiv]
    Gemma Zhang, Siddharth Mishra-Sharma, Cora Dvorkin

  • Uncovering dark matter density profiles in dwarf galaxies with graph neural networks [arXiv]
    Tri Nguyen, Siddharth Mishra-Sharma, Reuel Williams, Lina Necib

  • Estimating Cosmological Constraints from Galaxy Cluster Abundance using Simulation-Based Inference [arXiv]
    Moonzarin Reza, Yuanyuan Zhang, Brian Nord, Jason Poh, Aleksandra Ciprijanovic, Louis Strigari

  • Towards reconstructing the halo clustering and halo mass function of N-body simulations using neural ratio estimation [arXiv]
    Androniki Dimitriou, Christoph Weniger, Camila A. Correa

  • Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation [arXiv]
    Noemi Anau Montel, Adam Coogan, Camila Correa, Konstantin Karchev, Christoph Weniger

  • Implicit Likelihood Inference of Reionization Parameters from the 21 cm Power Spectrum [arXiv]
    Xiaosheng Zhao, Yi Mao, Benjamin D. Wandelt

  • Accelerated Bayesian SED Modeling using Amortized Neural Posterior Estimation [arXiv]
    ChangHoon Hahn, Peter Melchior

  • Simulation-Based Inference of Strong Gravitational Lensing Parameters [arXiv]
    Ronan Legin, Yashar Hezaveh, Laurence Perreault Levasseur, Benjamin Wandelt

  • Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation [arXiv]
    Alex Cole, Benjamin Kurt Miller, Samuel J. Witte, Maxwell X. Cai, Meiert W. Grootes, Francesco Nattino, Christoph Weniger

  • A neural simulation-based inference approach for characterizing the Galactic Center γ-ray excess [arXiv]
    Siddharth Mishra-Sharma, Kyle Cranmer

  • Inferring dark matter substructure with astrometric lensing beyond the power spectrum [arXiv]
    Siddharth Mishra-Sharma

  • Approximate Bayesian Neural Doppler Imaging [arXiv]
    A. Asensio Ramos, C. Diaz Baso, O. Kochukhov

  • Lossless, Scalable Implicit Likelihood Inference for Cosmological Fields [arXiv]
    T. Lucas Makinen, Tom Charnock, Justin Alsing, Benjamin D. Wandelt

  • Real-time gravitational-wave science with neural posterior estimation [arXiv]
    Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf

  • Real-Time Likelihood-Free Inference of Roman Binary Microlensing Events with Amortized Neural Posterior Estimation [arXiv]
    Keming Zhang, Joshua S. Bloom, B. Scott Gaudi, Francois Lanusse, Casey Lam, Jessica R. Lu

  • Towards constraining warm dark matter with stellar streams through neural simulation-based inference [arXiv]
    Joeri Hermans, Nilanjan Banik, Christoph Weniger, Gianfranco Bertone, Gilles Louppe

  • Lightning-Fast Gravitational Wave Parameter Inference through Neural Amortization [arXiv]
    Arnaud Delaunoy, Antoine Wehenkel, Tanja Hinderer, Samaya Nissanke, Christoph Weniger, Andrew R. Williamson, Gilles Louppe

  • The sum of the masses of the Milky Way and M31: a likelihood-free inference approach [arXiv]
    Pablo Lemos, Niall Jeffrey, Lorne Whiteway, Ofer Lahav, Niam I Libeskind, Yehuda Hoffman

  • Likelihood-free inference with neural compression of DES SV weak lensing map statistics [arXiv]
    Niall Jeffrey, Justin Alsing, François Lanusse

  • Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning [arXiv]
    Johann Brehmer, Siddharth Mishra-Sharma, Joeri Hermans, Gilles Louppe, Kyle Cranmer

  • Fast likelihood-free cosmology with neural density estimators and active learning [arXiv]
    Justin Alsing, Tom Charnock, Stephen Feeney, Benjamin Wandelt

  • Investigating the turbulent hot gas in X-COP galaxy clusters [arXiv]
    Simon Dupourqué, Nicolas Clerc, Etienne Pointecouteau, Dominique Eckert, Stefano Ettori, Franco Vazza

Particle Physics

  • Simulation-based inference methods for particle physics [arXiv]
    Johann Brehmer, Kyle Cranmer

  • MadMiner: Machine learning-based inference for particle physics [arXiv]
    Johann Brehmer, Felix Kling, Irina Espejo, Kyle Cranmer

  • Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale [arXiv]
    Atılım Güneş Baydin et al

  • Constraining Effective Field Theories with Machine Learning [arXiv]
    Johann Brehmer, Kyle Cranmer, Gilles Louppe, Juan Pavez

Neuroscience

  • Simulation-based inference for efficient identification of generative models in computational connectomics [bioRxiv]
    Jan Boelts, Philipp Harth, Richard Gao, Daniel Udvary, Felipe Yáñez, Daniel Baum, Hans-Christian Hege, Marcel Oberlaender, Jakob H. Macke

  • Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience [Paper]
    Alexander Fengler, Lakshmi N Govindarajan, Tony Chen, Michael J Frank

  • Training deep neural density estimators to identify mechanistic models of neural dynamics [Paper]
    Pedro J Gonçalves et al

  • Amortized Bayesian Inference for Models of Cognition [arXiv]
    Stefan T. Radev, Andreas Voss, Eva Marie Wieschen, Paul-Christian Bürkner

Health and Medicine

  • Mutation rate, selection, and epistasis inferred from RNA virus haplotypes via neural posterior estimation [bioRxiv]
    Itamar Caspi, Moran Meir, Nadav Ben Nun, Uri Yakhini, Adi Stern, Yoav Ram

  • Simulation-Based Inference for Whole-Brain Network Modeling of Epilepsy using Deep Neural Density Estimators [medRxiv]
    Meysam Hashemi, Anirudh N. Vattikonda, Jayant Jha, Viktor Sip, Marmaduke M. Woodman, Fabrice Bartolomei, Viktor K. Jirsa

  • Simulation-Based Inference for Global Health Decisions [arXiv]
    Christian Schroeder de Witt et al

Other Domains

Applications where multiple papers could not be grouped under a single heading.

  • Simulation-based inference of single-molecule force spectroscopy [arXiv]
    Lars Dingeldein, Pilar Cossio, Roberto Covino

  • Normalizing flows for likelihood-free inference with fusion simulations [Paper]
    C S Furia, R M Churchill

  • Amortized Bayesian Inference of GISAXS Data with Normalizing Flows [arXiv]
    Maksim Zhdanov, Lisa Randolph, Thomas Kluge, Motoaki Nakatsutsumi, Christian Gutt, Marina Ganeva, Nico Hoffmann

  • Optimal Design of Experiments for Simulation-Based Inference of Mechanistic Acyclic Biological Networks [arXiv]
    Vincent Zaballa, Elliot Hui

  • Simulation-based Bayesian inference for multi-fingered robotic grasping [arXiv]
    Norman Marlier, Olivier Brüls, Gilles Louppe

  • Simulation-based inference of evolutionary parameters from adaptation dynamics using neural networks [bioRxiv]
    Grace Avecilla, Julie N. Chuong, Fangfei Li, Gavin Sherlock, David Gresham, Yoav Ram

Application to Real Data

Applications of neural simulation-based inference beyond synthetic data.

  • SIMBIG : A Forward Modeling Approach To Analyzing Galaxy Clustering [arXiv]
    ChangHoon Hahn et al

  • A neural simulation-based inference approach for characterizing the Galactic Center γ-ray excess [arXiv]
    Siddharth Mishra-Sharma, Kyle Cranmer

  • Towards constraining warm dark matter with stellar streams through neural simulation-based inference (Preliminary) [arXiv]
    Joeri Hermans, Nilanjan Banik, Christoph Weniger, Gianfranco Bertone, Gilles Louppe

  • Likelihood-free inference with neural compression of DES SV weak lensing map statistics [arXiv]
    Niall Jeffrey, Justin Alsing, François Lanusse