Fork 前 README 文件在 这里,由于原 README 文件格式问题,主观感情色彩太浓,且无关信息太多,因此修改为本 README。
原书介绍(内容来自京东)
Deep Learning,江湖人称花书、AI 圣经。深度学习领域奠基性的经典畅销书,长期位居美国亚马逊 AI 和机器学习类图书榜首,所有数据科学家和机器学习从业者的必读图书,特斯拉 CEO 埃隆·马斯克等国内外众多专家推荐!
深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。因为计算机能够从经验中获取知识,所以不需要人类来形式化地定义计算机需要的所有知识。层次概念允许计算机通过构造简单的概念来学习复杂的概念,而这些分层的图结构将具有很深的层次。本书会介绍深度学习领域的许多主题。
本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。
《Deep Learning》由全球知名的三位专家 IanGoodfellow、YoshuaBengio和AaronCourville 撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:
- 第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;
- 第2部分系统深入地讲解现今已成熟的深度学习方法和技术;
- 第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。
封面特色:由艺术家DanielAmbrosi提供的**公园杜鹃花步道梦幻景观。在Ambrosi的亿级像素全景图上,应用JosephSmarr(Google)和ChirsLamb(NVIDIA)修改后的GoogleDeepDream开源程序,创造了DanielAmbrosi的“幻景”。
本项目为原书 Deep Learning 的翻译本地化项目,人民邮电出版社已经购买了中文翻译版权,在 异步社区 发售,可读样章,如果觉得有帮助,请购买正版纸质书或阅读正版电子书,我能给的建议只有:京东阅读上电子版是我能找到的全网最低价。
- @swordyork:第1、4、7、10、14、20章及第12.4、12.5节
- @liber145:第2、5、8、11、15、18章
- @KevinLee1110:第3、6、9章
- @futianfan:第13、16、17、19章及第12.1至12.3节
阅读英文原版数据略有吃力的深度学习者,由于翻译水平有限,读者可以以中文版为主、英文版为辅来阅读学习,原版地址。
- 我们不是文学工作者,不专职翻译。单靠我们,无法给出今天的翻译,众多网友都给我们提出了宝贵的建议,因此开源帮了很大的忙。出版社会给我们稿费(我们也不知道多少,可能2万左右),我们也不好意思自己用,商量之后觉得捐出是最合适的,以所有贡献过的网友的名义(我们把稿费捐给了杉树公益,用于4名贵州高中生三年的生活费,见 捐赠情况)。
- PDF电子版对于技术类书籍来说是很重要的,随时需要查询,拿着纸质版到处走显然不合适。国外很多技术书籍都有对应的电子版(虽然不一定是正版),而国内的几乎没有。个人认为这是出版社或者作者认为国民素质还没有高到主动为知识付费的境界,所以不愿意"泄露"电子版。时代在进步,我们也需要改变。特别是翻译作品普遍质量不高的情况下,要敢为天下先。
- 深度学习发展太快,日新月异,所以我们希望大家更早地学到相关的知识。我觉得原作者开放PDF电子版也有类似的考虑,也就是先阅读后付费。我们认为**人口素质已经足够高,懂得为知识付费。当然这不是付给我们的,是付给出版社的,出版社再付给原作者。我们不希望中文版的销量因PDF电子版的存在而下滑。出版社只有值回了版权才能在以后引进更多的优秀书籍。我们这个开源翻译先例也不会成为一个反面案例,以后才会有更多的PDF电子版。
- 开源也涉及版权问题,出于版权原因,我们不再更新此初版PDF文件,请大家以最终的纸质版为准。(但源码会一直更新)
我们有3个类别的校对人员。
- 负责人:对应的翻译者。
- 简单阅读:对语句不通顺或难以理解的地方提出修改意见。
- 中英对比:进行中英对应阅读,排除少翻错翻的情况。
章节 | 负责人 | 简单阅读 | 中英对比 |
---|---|---|---|
第一章 前言 | @swordyork | lc, @SiriusXDJ, @corenel, @NeutronT | @linzhp |
第二章 线性代数 | @liber145 | @SiriusXDJ, @angrymidiao | @badpoem |
第三章 概率与信息论 | @KevinLee1110 | @SiriusXDJ | @kkpoker, @Peiyan |
第四章 数值计算 | @swordyork | @zhangyafeikimi | @hengqujushi |
第五章 机器学习基础 | @liber145 | @wheaio, @huangpingchun | @fairmiracle, @linzhp |
第六章 深度前馈网络 | @KevinLee1110 | David_Chow, @linzhp, @sailordiary | |
第七章 深度学习中的正则化 | @swordyork | @NBZCC | |
第八章 深度模型中的优化 | @liber145 | @happynoom, @codeVerySlow | @huangpingchun |
第九章 卷积网络 | @KevinLee1110 | @zhaoyu611, @corenel | @zhiding |
第十章 序列建模:循环和递归网络 | @swordyork | lc | @zhaoyu611, @yinruiqing |
第十一章 实践方法论 | @liber145 | ||
第十二章 应用 | @swordyork, @futianfan | @corenel | |
第十三章 线性因子模型 | @futianfan | @cloudygoose | @ZhiweiYang |
第十四章 自编码器 | @swordyork | @Seaball, @huangpingchun | |
第十五章 表示学习 | @liber145 | @cnscottzheng | |
第十六章 深度学习中的结构化概率模型 | @futianfan | ||
第十七章 蒙特卡罗方法 | @futianfan | @sailordiary | |
第十八章 面对配分函数 | @liber145 | @tankeco | |
第十九章 近似推断 | @futianfan | @sailordiary, @hengqujushi, huanghaojun | |
第二十章 深度生成模型 | @swordyork | ||
参考文献 | @pkuwwt |
@tttwwy @tankeco @fairmiracle @GageGao @huangpingchun @MaHongP @acgtyrant @yanhuibin315 @Buttonwood @titicacafz @weijy026a @RuiZhang1993 @zymiboxpay @xingkongliang @oisc @tielei @yuduowu @Qingmu @HC-2016 @xiaomingabc @bengordai @Bojian @JoyFYan @minoriwww @khty2000 @gump88 @zdx3578 @PassStory @imwebson @wlbksy @roachsinai @Elvinczp @endymecy name:YUE-DaJiong @9578577 @linzhp @cnscottzheng @germany-zhu @zhangyafeikimi @showgood163 @gump88 @kangqf @NeutronT @badpoem @kkpoker @Seaball @wheaio @angrymidiao @ZhiweiYang @corenel @zhaoyu611 @SiriusXDJ @dfcv24 EmisXXY FlyingFire vsooda @friskit-china @poerin @ninesunqian @JiaqiYao @Sofring @wenlei @wizyoung @imageslr @@indam @XuLYC @zhouqingping @freedomRen @runPenguin @pkuwwt @wuqi @tjliupeng @neo0801 @jt827859032 @demolpc @fishInAPool @xiaolangyuxin @jzj1993 @whatbeg LongXiaJun jzd
- 各种问题或者建议可以提issue,建议使用中文。
- 由于版权问题,我们不能将图片和 bib 上传,请见谅。
- Due to copyright issues, we would not upload figures and the bib file.
- 可用于学习研究目的,不得用于任何商业行为。谢谢!
这种格式确实比较重要,方便查阅,也方便索引。初步转换后,生成网页,具体见 deeplearningbook-chinese。 注意,这种转换没有把图放进去,也不会放图。目前使用单个 脚本,基于 latex 文件转换,以后可能会更改但原则是不直接修改 md文件。 需要的同学可以自行修改 脚本。
本书质量非常之高,建议认真阅读,仔细理解!