A Clojure wrapper for the Java differential-privacy library.
Steps to build it locally:
-
Download and build the Java differential-privacy library:
git clone https://github.com/google/differential-privacy.git
cd differential-privacy/java/
bazel build ...
- Install
libdifferentialprivacy.jar
in your local Maven repository:
mvn install:install-file -Dfile=bazel-bin/main/com/google/privacy/differentialprivacy/libdifferentialprivacy.jar -DgroupId=com.google.privacy.differentialprivacy -DartifactId=libdifferentialprivacy -Dversion=1.0 -Dpackaging=jar
- Clone this repository and install the library:
git clone https://github.com/OpenMined/clojure-dp.git
cd clojure-dp
lein install
See demo notebooks (run online).
Examples:
(require '[differential-privacy-clj.core :as dp])
(def example-data (take 1000 (repeatedly #(rand 10.0))))
(println "True sum: "
(reduce + example-data))
(println "DP sum: "
(dp/bounded-sum example-data :epsilon 0.1
:lower 0 :upper 10
:max-partitions-contributed 1))
(println "True count:"
(count example-data))
(println "DP count: "
(dp/count example-data :epsilon 0.1
:max-partitions-contributed 1))
(println "True mean:" (/ (reduce + example-data)
(count example-data)))
(println "DP mean:" (dp/bounded-mean example-data :epsilon 0.1
:lower 0 :upper 10
:max-partitions-contributed 1
:max-contributions-per-partition 1))
will print something like:
True sum: 4988.542973798648
DP sum: 5175.075793958153
True count: 1000
DP count: 999
True mean: 4.988542973798648
DP mean: 5.002603661455349
Algorithm | Support |
---|---|
Count | ✔️ |
Sum | ✔️ |
Mean | ✔️ |
Variance | ✅ |
Standard deviation | ✅ |
Order statistics (incl. min, max, and median) | ✅ |