/separableconv-torch

PyTorch implementation of Depthwise Separable Convolution

Primary LanguagePythonMIT LicenseMIT

Unofficial PyTorch Module - Depthwise Separable Convolution

An illustration of Depthwise Separable Convolution. Credit: Depthwise Convolution Is All You Need for Learning Multiple Visual Domains.

total downloads monthly downloads license pypi version ci testing package testing

PyTorch (unofficial) implementation of Depthwise Separable Convolution. This type of convolution is introduced by Chollet in Xception: Deep Learning With Depthwise Separable Convolutions. This package provides SeparableConv1d, SeparableConv2d, SeparableConv3d, LazySeparableConv1d, LazySeparableConv2d, and LazySeparableConv3d.

Installation

Install separableconv-torch using pip (require: Python >=3.7).

pip install separableconv-torch

Parameters

Parameter Description Type
in_channels Number of channels in the input image int
out_channels Number of channels produced by the convolution int
kernel_size Size of the convolving kernel int or tuple
stride Stride of the convolution. Default: 1 int or tuple, optional
padding Padding added to all four sides of the input. Default: 0 int, tuple or str, optional
padding_mode 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros' string, optional
dilation Spacing between kernel elements. Default: 1 int or tuple, optional
depth_multiplier The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to in_channels * depth_multiplier. Default: 1 int, optional
normalization_dw depthwise convolution normalization. Default: 'bn' str, optional
normalization_pw pointwise convolution normalization. Default: 'bn' str, optional
activation_dw depthwise convolution activation. Default: torch.nn.ReLU Callable[..., torch.nn.Module], optional
activation_pw pointwise convolution activation. Default: torch.nn.ReLU Callable[..., torch.nn.Module], optional
bias If True, adds a learnable bias to the output. Default: True bool, optional

Example Usage

For 1-dimensional case.
import torch
import separableconv.nn as nn

# set input
input = torch.randn(4, 10, 100)

# define model
m = nn.SeparableConv1d(10, 30, 3)

# process input through model
output = m(input)
For 2-dimensional case.
import torch
import separableconv.nn as nn

# set input
input = torch.randn(4, 10, 100, 100)

# define model
m = nn.SeparableConv2d(10, 30, 3)

# process input through model
output = m(input)
For 3-dimensional case.
import torch
import separableconv.nn as nn

# set input
input = torch.randn(4, 10, 100, 100, 100)

# define model
m = nn.SeparableConv3d(10, 30, 3)

# process input through model
output = m(input)
Stacked SeparableConv2d.
import torch
import separableconv.nn as nn

# set input
input = torch.randn(4, 3, 100, 100)

# define model
m = nn.Sequential(
        nn.SeparableConv2d(3, 32, 3),
        nn.SeparableConv2d(32, 64, 3),
        nn.SeparableConv2d(64, 96, 3))

# process input through model
output = m(input)
For lazy 2-dimensional case.
import torch
import separableconv.nn as nn

# set input
input = torch.randn(4, 10, 100, 100)

# define model
m = nn.LazySeparableConv2d(30, 3)

# process input through model
output = m(input)