Note: this repository contains the Java 8 version of the project. The NCalc Android calculator project maintains a Java 7 Android branch of the Android *.AAR library.
Try the Android or iOS apps:
or help testing the latest Android BETA version or the web demo at matheclipse.org. Tip: You can use the Genymobile/scrcpy tool for faster testing your Symja script inputs on your android device with BETA version installed.
Read the Symja Manual for the description of the Symja language or browse the available functions. We encourage everyone to participate in our Wiki.
Features of the Symja language:
- arbitrary precision integers, rational and complex numbers. Polynomial, list functions and Associations
- differentiation, integration, equation solving, linear algebra, number theory, combinatorial, logic and polynomial functions...
- a general purpose Term Rewriting System and Pattern Matching engine
- use human readable math expression strings or the internal abstract syntax tree (AST) representation to code in Java. See the Unit test examples
- two REPLs are available in the library. A Console.java for standard math input and a MMAConsole.java for "Mathematica like syntax" input.
- Symja with "Mathematica like syntax" input can also be used interactively in a BeakerX/Jupyter Lab environment
- Symja can also be used interactively in the Java jshell
- the Rubi symbolic integration rules are used to implement the Integrate function, they can be systematically applied to determine the antiderivative of a wide variety of mathematical expressions.
-
Appengine web interface symjaweb.appspot.com - available as open source in this Github repository
-
Android App Calculator N+ on Google play store - available as open source in this Github repository provides an IDE mode to calculate arbitrary Symja expressions.
-
Eclipse EASE extension - use Symja as a REPL in Eclipse with this example Github repository which contains some Symja example scripts.
To get an idea of the kinds of expressions Symja handles, see the tests in this file.
Manipulate(Plot3D(Sin(a * x * y), {x, -1.5, 1.5}, {y, -1.5, 1.5}), {a,1,5})
Plot(Piecewise({{x^2, x < 0}, {x, x >= 0&&x<1},{Cos(x-1), x >= 1}}), {x, -2, 12})
package org.matheclipse.core.examples;
import org.matheclipse.core.eval.ExprEvaluator;
import org.matheclipse.core.expression.F;
import org.matheclipse.core.interfaces.IAST;
import org.matheclipse.core.interfaces.IExpr;
import org.matheclipse.core.interfaces.ISymbol;
import org.matheclipse.parser.client.SyntaxError;
import org.matheclipse.parser.client.math.MathException;
public class Example {
public static void main(String[] args) {
try {
ExprEvaluator util = new ExprEvaluator(false, 100);
// Convert an expression to the internal Java form:
// Note: single character identifiers are case sensitive
// (the "D()" function identifier must be written as upper case
// character)
String javaForm = util.toJavaForm("D(sin(x)*cos(x),x)");
// prints: D(Times(Sin(x),Cos(x)),x)
System.out.println("Out[1]: " + javaForm.toString());
// Use the Java form to create an expression with F.* static
// methods:
ISymbol x = F.Dummy("x");
IAST function = F.D(F.Times(F.Sin(x), F.Cos(x)), x);
IExpr result = util.eval(function);
// print: Cos(x)^2-Sin(x)^2
System.out.println("Out[2]: " + result.toString());
// Note "diff" is an alias for the "D" function
result = util.eval("diff(sin(x)*cos(x),x)");
// print: Cos(x)^2-Sin(x)^2
System.out.println("Out[3]: " + result.toString());
// evaluate the last result (% contains "last answer")
result = util.eval("%+cos(x)^2");
// print: 2*Cos(x)^2-Sin(x)^2
System.out.println("Out[4]: " + result.toString());
// evaluate an Integrate[] expression
result = util.eval("integrate(sin(x)^5,x)");
// print: 2/3*Cos(x)^3-1/5*Cos(x)^5-Cos(x)
System.out.println("Out[5]: " + result.toString());
// set the value of a variable "a" to 10
result = util.eval("a=10");
// print: 10
System.out.println("Out[6]: " + result.toString());
// do a calculation with variable "a"
result = util.eval("a*3+b");
// print: 30+b
System.out.println("Out[7]: " + result.toString());
// Do a calculation in "numeric mode" with the N() function
// Note: single character identifiers are case sensistive
// (the "N()" function identifier must be written as upper case
// character)
result = util.eval("N(sinh(5))");
// print: 74.20321057778875
System.out.println("Out[8]: " + result.toString());
// define a function with a recursive factorial function definition.
// Note: fac(0) is the stop condition.
result = util.eval("fac(x_Integer):=x*fac(x-1);fac(0)=1");
// now calculate factorial of 10:
result = util.eval("fac(10)");
// print: 3628800
System.out.println("Out[9]: " + result.toString());
function = F.Function(F.Divide(F.Gamma(F.Plus(F.C1, F.Slot1)), F.Gamma(F.Plus(F.C1, F.Slot2))));
// eval function ( Gamma(1+#1)/Gamma(1+#2) ) & [23,20]
result = util.evalFunction(function, "23", "20");
// print: 10626
System.out.println("Out[10]: " + result.toString());
} catch (SyntaxError e) {
// catch Symja parser errors here
System.out.println(e.getMessage());
} catch (MathException me) {
// catch Symja math errors here
System.out.println(me.getMessage());
} catch (final Exception ex) {
System.out.println(ex.getMessage());
} catch (final StackOverflowError soe) {
System.out.println(soe.getMessage());
} catch (final OutOfMemoryError oome) {
System.out.println(oome.getMessage());
}
}
}
Using Maven, add the following to your pom.xml
<dependencies>
<dependency>
<groupId>org.matheclipse</groupId>
<artifactId>matheclipse-core</artifactId>
<version>1.0.0-SNAPSHOT</version>
</dependency>
</dependencies>
<repositories>
<repository>
<id>snapshots-repo</id>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
and run
mvn clean install
With the following command you can run the Symja console from the command line
mvn exec:java -pl matheclipse-core
With the following command you can run a symja console with a Mathematica-compatible syntax and functions
mvn exec:java@mma -pl matheclipse-core
With the following command you can build a fat jar which contains all needed classes
mvn assembly:single -pl matheclipse-core
First, you'll need a Java Development Kit compatible with Java 8 or later.
You can find JDK installers at:
If you're unsure how to install the JDK, you can find instructions for all operating systems here:
Pay careful attention to anything about setting up your PATH
or CLASSPATH
.
Install and open the latest version of the Eclipse development IDE for Java Developers:
a) Fork the Symja repository to use as a starting point.
- Navigate to github.com/axkr/symja_android_library in your browser.
- Click the "Fork" button in the top-right of the page.
- Once your fork is ready, open the new repository's "Settings" by clicking the link in the menu bar on the left.
- Change the repository name to the name of your Library and save your changes.
b) Clone your new repository to your Eclipse workspace.
- Open Eclipse and select the "File -> Import..." menu item.
- Select "Git -> Projects from Git", and click "Next >".
- Select "URI" and click "Next >".
- Enter your repository's clone URL in the "URI" field. The remaining fields in the "Location" and "Connection" groups will get automatically filled in.
- Enter your Github credentials in the "Authentication" group, and click "Next >".
- Select the
master
branch on the next screen, and click "Next >". - The default settings on the "Local Configuration" screen should work fine, click "Next >".
- Make sure "Import existing projects" is selected, and click "Next >".
- Eclipse should find and select the
symja_android_library
automatically, click "Finish".
See this Git version control with Eclipse (EGit) - Tutorial for a general overview.
If you have any questions about using or developing for this project, send me an email!
- the complete Symja system is published under the GNU GENERAL PUBLIC LICENSE Version 3.
If you would like to use parts of the system here are some of the associated licenses:
- the JAS Java Algebra System is published under the (LESSER) GNU GENERAL PUBLIC LICENSE license. The Java bytecode is dual licenced also under the Apache 2.0 license to allow usage in Android projects.
- the apfloat project is published under the (LESSER) GNU GENERAL PUBLIC LICENSE license.
- the LogicNG project is published under the Apache software license
- the Hipparchus Mathematics Library is published under the Apache software license
- the JGraphT Library is published under the Eclipse Public License (EPL) or (LESSER) GNU GENERAL PUBLIC LICENSE license.
- the Symja parser libraries (org.matheclipse.parser* packages) are published under the APACHE LICENSE Version 2.0.