/tsallis_actor_critic_mujoco

Implementation of Tsallis Actor Critic method

Primary LanguageJupyter NotebookOtherNOASSERTION

Tsallis Actor Critic

This repository provides the implementation of Tsallis actor critic (TAC) method based on Spinningup packages which is educational resource produced by OpenAI. TAC generalizes the standard Shannon-Gibbs entropy maximization in RL to the Tsallis entropy.

Kyungjae Lee, Sungyub Kim, Sungbin Lim, Sungjoon Choi, Mineui Hong, Jaein Kim, Yong-Lae Park and Songhwai Oh, "Generalized Tsallis Entropy Reinforcement Learning \and Its Application to Soft Mobile Robots," in Proc. of the Robotics: Science and System (RSS), 2020.

Installaction

Prerequisite

sudo apt-get update && sudo apt-get install libopenmpi-dev

Virtual Environment (Reconmmend)

virtualenv tacenv --python=python3.5 (--system-site-packages)

You can change "tacenv". If your machine already has tensorflow-gpu package, I reconmmend the option --system-site-packages to use tensorflow-gpu.

Install MuJoCo (Recommend)

pip install gym[mujoco,robotics]

Install Spinningup with Tsallis Actor Critic

cd tsallis_actor_critic_mujoco
pip install -e .

Install Custom Gym

cd tsallis_actor_critic_mujodo/custom_gym/
pip install -e .

If you want to add a customized environment, see https://github.com/openai/gym/tree/master/gym/envs#how-to-create-new-environments-for-gym

Jupyter Notebook Examples for Tsallis Entropy and Dynamic Programming

cd tsallis_actor_critic_mujoco
cd spinup/algos/tac
ls

The following files will be shown

tac
├── core.py
├── tac.py
├── tf_tsallis_statistics.py
├── Example_Tsallis_MDPs.ipynb 
└── Example_Tsallis_statistics.ipynb
  • Example_Tsallis_MDPs.ipynb shows the figure of performance error bound.
  • Example_Tsallis_statistics.ipynb shows the multi armed bandit with maximum Tsallis entropy examples.

Reproducing experiments

Run test

cd tsallis_actor_critic_mujoco
python -m spinup.run tac --env HalfCheetah-v2

Run single experiment

cd tsallis_actor_critic_mujoco
python -m spinup.run tac --env HalfCheetah-v2 --exp_name half_tac_alpha_cst_q_1.5_cst_gaussian_q_log  --epochs 200 --lr 1e-3 --q 1.5 --pdf_type gaussian --log_type q-log --alpha_schedule constant --q_schedule constant --seed 0 10 20 30 40 50 60 70 80 90

Results will be saved in data folder

Experiment naming convention (Recommend)

[env]_[algorithm]_alpha_[alpha_schedule]_q_[entropic_index]_[q_schedule]_[distribution]_[entropy_type]

  • [env]: Environment name, ex) half
  • [algorithm]: Algorithm name, ex) tac
  • [alpha_schedule] indicates alpha_schedule. Use cst for constant and sch for scheduling
  • [entropic_index] indicates q
  • [q_schedule] is q_schedule. Use cst for constant and sch for scheduling
  • [distribution] indicates pdf_type which has two options: gaussian and q-gaussian
  • [entropy_type] indicates log_type which has two options: log and q-log

This convention will help you not forget a parameter setting. Usage of convention

python -m spinup.run tac --env HalfCheetah-v2 --exp_name [experiment_name]

Run multiple experiments

cd tsallis_actor_critic_mujoco
./shell_scripts/tsallis_half_cheetah.sh

To run mulitple experiments at once, we employ a simple and easy way as follows:

run program_1 & program_2 & ... & program_n