robertcjoshygithub/HeartHealthPrediction
The major reason for the death in worldwide is the heart disease in high and low developed countries. The data scientist uses distinctive machine learning techniques for modeling health diseases by using authentic dataset efficiently and accurately. The medical analysts are needy for the models or systems to predict the disease in patients before the strike. High cholesterol, unhealthy diet, harmful use of alcohol, high sugar levels, high blood pressure, and smoking are the main symptoms of chances of the heart attack in humans. Data Science is an advanced and enhanced method for the analysis and encapsulation of useful information. The attributes and variable in the dataset discover an unknown and future state of the model using prediction in machine learning. Chest pain, blood pressure, cholesterol, blood sugar, family history of heart disease, obesity, and physical inactivity are the chances that influence the possibility of heart diseases. This project emphasizes to evaluate different algorithms for the diagnosis of heart disease with better accuracies by using the patient’s data set because predictions and descriptions are fundamental objectives of machine learning. Each procedure has unique perspective for the modeling objectives. Algorithms have been implemented for the prediction of heart disease with our Heart patient data set
Jupyter Notebook
No issues in this repository yet.