/mealpy

A collection of the state-of-the-art MEta-heuristic ALgorithms in PYthon (mealpy)

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

Meta-Heuristic Algorithms using Python (MEALPY)

GitHub release Wheel PyPI version DOI Documentation Status Downloads License: GPL v3

Quick Notification

Introduction

  • MEALPY is a largest python module for the most of cutting-edge nature-inspired meta-heuristic algorithms and is distributed under GNU General Public License (GPL) V3 license.

  • Current version: 2.4.2, Total algorithms: Total algorithms: 84 original, 24 official variants, 38 developed variants, 9 dummies.

  • Different versions of mealpy in terms of passing hyper-parameters. So please careful check your version before using this library. (All releases can be found here: Link)

    • mealpy < 1.0.5
    • 1.1.0 < mealpy < 1.2.2
    • 2.0.0 <= mealpy <= 2.1.2
    • mealpy == 2.2.0
    • mealpy == 2.3.0
    • 2.4.0 <= mealpy <= 2.4.2 (From this version, algorithms can solve discrete problem)
  • The goals of this framework are:

    • Sharing knowledge of meta-heuristic fields to everyone without a fee
    • Helping other researchers in all field access to optimization algorithms as quickly as possible
    • Implement the classical as well as the state-of-the-art meta-heuristics (The whole history of meta-heuristics)
  • What you can do with this library:

    • Analyse parameters of algorithms.
    • Perform Qualitative Analysis of algorithms.
    • Perform Quantitative Analysis of algorithms.
    • Analyse rate of convergence of algorithms.
    • Test the scalability of algorithms.
    • Analyse the stability of algorithms.
    • Analyse the robustness of algorithms.
  • And please give me some credits if you use this library, link to my first-author papers.

@software{thieu_nguyen_2020_3711949,
  author       = {Nguyen Van Thieu},
  title        = {A collection of the state-of-the-art MEta-heuristics ALgorithms in PYthon: Mealpy},
  month        = march,
  year         = 2020,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.3711948},
  url          = {https://doi.org/10.5281/zenodo.3711948}
}

Installation

User installation

Install the current PyPI release:

    pip install mealpy==2.4.2

Examples

  • Simple Benchmark Function
from mealpy.bio_based import SMA
import numpy as np

def fitness_function(solution):
    return np.sum(solution**2)

problem_dict1 = {
    "fit_func": fitness_function,
    "lb": [-100, ] * 30,
    "ub": [100, ] * 30,
    "minmax": "min",
    "log_to": None,
    "save_population": False,
}

## Run the algorithm
model = SMA.BaseSMA(problem_dict1, epoch=100, pop_size=50, pr=0.03)
best_position, best_fitness = model.solve()
print(f"Best solution: {best_position}, Best fitness: {best_fitness}")

Light         Dark

  • Global objectives chart and Local objectives chart

Light         Dark

  • Diversity of population chart and Exploration verse Exploitation chart

Light         Dark

  • Running time chart and Trajectory of some first agents chart

Light         Dark

Tutorial Videos

All tutorial videos: Link

All code examples: Link

All visualization examples: Link

Mealpy Application

Mealpy + Neural Network (Replace the Gradient Descent Optimizer)

  • Time-series Problem:
    • Traditional MLP code: Link
    • Hybrid code (Mealpy + MLP): Link
  • Classification Problem:
    • Traditional MLP code: Link
    • Hybrid code (Mealpy + MLP): Link

Mealpy + Neural Network (Optimize Neural Network Hyper-parameter)

Code: Link

Other Applications

  • Solving Knapsack Problem (Discrete problems): Link

  • Optimize SVM (SVC) model: Link

  • Optimize Linear Regression Model: Link

Important links

Documents

  • Meta-heuristic Categories: (Based on this article: link)

    • Evolutionary-based: Idea from Darwin's law of natural selection, evolutionary computing
    • Swarm-based: Idea from movement, interaction of birds, organization of social ...
    • Physics-based: Idea from physics law such as Newton's law of universal gravitation, black hole, multiverse
    • Human-based: Idea from human interaction such as queuing search, teaching learning, ...
    • Biology-based: Idea from biology creature (or microorganism),...
    • System-based: Idea from eco-system, immune-system, network-system, ...
    • Math-based: Idea from mathematical form or mathematical law such as sin-cosin
    • Music-based: Idea from music instrument
  • Paras: The number of parameters in the algorithm (Not counting the fixed parameters in the original paper)

    • Almost algorithms have 2 paras (epoch, population_size) and plus some paras depend on each algorithm.
    • Some algorithms belong to "good" performance and have only 2 paras meaning the algorithms are outstanding
  • Difficulty - Difficulty Level (Personal Opinion): Objective observation from author. Depend on the number of parameters, number of equations, the original ideas, time spend for coding, source lines of code (SLOC).

    • Easy: A few paras, few equations, SLOC very short
    • Medium: more equations than Easy level, SLOC longer than Easy level
    • Hard: Lots of equations, SLOC longer than Medium level, the paper hard to read.
    • Hard* - Very hard: Lots of equations, SLOC too long, the paper is very hard to read.

** For newbie, I recommend to read the paper of algorithms which difficulty is "easy" or "medium" difficulty level.

Group Name Module Class Year Paras Difficulty
Evolutionary Evolutionary Programming EP BaseEP 1964 3 easy
Evolutionary Evolution Strategies ES BaseES 1971 3 easy
Evolutionary Memetic Algorithm MA BaseMA 1989 7 easy
Evolutionary Genetic Algorithm GA BaseGA 1992 4 easy
Evolutionary Differential Evolution DE BaseDE 1997 5 easy
Evolutionary JADE 2009 6 medium
Evolutionary SADE 2005 2 medium
Evolutionary SHADE 2013 4 medium
Evolutionary L_SHADE 2014 4 medium
Evolutionary SAP_DE 2006 3 medium
Evolutionary Flower Pollination Algorithm FPA BaseFPA 2014 4 easy
Evolutionary Coral Reefs Optimization CRO BaseCRO 2014 11 medium
Evolutionary OCRO 2019 12 medium
0 0 0 0 0 0 0
Swarm Particle Swarm Optimization PSO BasePSO 1995 6 easy
Swarm PPSO 2019 2 medium
Swarm HPSO_TVAC 2017 4 medium
Swarm C_PSO 2015 6 medium
Swarm CL_PSO 2006 6 medium
Swarm Bacterial Foraging Optimization BFO OriginalBFO 2002 10 hard
Swarm ABFO 2019 8 medium
Swarm Bees Algorithm BeesA BaseBeesA 2005 8 medium
Swarm ProbBeesA 2015 5 medium
Swarm Cat Swarm Optimization CSO BaseCSO 2006 11 hard
Swarm Artificial Bee Colony ABC BaseABC 2007 8 medium
Swarm Ant Colony Optimization ACO-R BaseACOR 2008 5 easy
Swarm Cuckoo Search Algorithm CSA BaseCSA 2009 3 medium
Swarm Firefly Algorithm FFA BaseFFA 2009 8 easy
Swarm Fireworks Algorithm FA BaseFA 2010 7 medium
Swarm Bat Algorithm BA OriginalBA 2010 6 medium
Swarm Fruit-fly Optimization Algorithm FOA OriginalFOA 2012 2 easy
Swarm WhaleFOA 2020 2 medium
Swarm Social Spider Optimization SSpiderO BaseSSpiderO 2018 4 hard*
Swarm Grey Wolf Optimizer GWO BaseGWO 2014 2 easy
Swarm RW_GWO 2019 2 easy
Swarm Social Spider Algorithm SSpiderA BaseSSpiderA 2015 5 medium
Swarm Ant Lion Optimizer ALO OriginalALO 2015 2 easy
Swarm Moth Flame Optimization MFO OriginalMFO 2015 2 easy
Swarm Elephant Herding Optimization EHO BaseEHO 2015 5 easy
Swarm Jaya Algorithm JA OriginalJA 2016 2 easy
Swarm LevyJA 2021 2 easy
Swarm Whale Optimization Algorithm WOA BaseWOA 2016 2 medium
Swarm HI_WOA 2019 3 medium
Swarm Dragonfly Optimization DO BaseDO 2016 2 medium
Swarm Bird Swarm Algorithm BSA BaseBSA 2016 9 medium
Swarm Spotted Hyena Optimizer SHO BaseSHO 2017 6 medium
Swarm Salp Swarm Optimization SSO BaseSSO 2017 2 easy
Swarm Swarm Robotics Search And Rescue SRSR BaseSRSR 2017 2 hard*
Swarm Grasshopper Optimisation Algorithm GOA BaseGOA 2017 4 easy
Swarm Coyote Optimization Algorithm COA BaseCOA 2018 3 medium
Swarm Moth Search Algorithm MSA BaseMSA 2018 5 easy
Swarm Sea Lion Optimization SLO BaseSLO 2019 2 medium
Swarm Nake Mole-Rat Algorithm NMRA BaseNMRA 2019 3 easy
Swarm Pathfinder Algorithm PFA BasePFA 2019 2 medium
Swarm Sailfish Optimizer SFO BaseSFO 2019 5 easy
Swarm Harris Hawks Optimization HHO BaseHHO 2019 2 medium
Swarm Manta Ray Foraging Optimization MRFO BaseMRFO 2020 3 medium
Swarm Bald Eagle Search BES BaseBES 2020 7 easy
Swarm Sparrow Search Algorithm SSA OriginalSSA 2020 5 medium
Swarm Hunger Games Search HGS OriginalHGS 2021 4 medium
Swarm Aquila Optimizer AO OriginalAO 2021 2 easy
0 0 0 0 0 0 0
Physics Simulated Annealling SA BaseSA 1987 9 medium
Physics Wind Driven Optimization WDO BaseWDO 2013 7 easy
Physics Multi-Verse Optimizer MVO OriginalMVO 2016 4 easy
Physics Tug of War Optimization TWO BaseTWO 2016 2 easy
Physics EnhancedTWO 2020 2 medium
Physics Electromagnetic Field Optimization EFO OriginalEFO 2016 6 easy
Physics Nuclear Reaction Optimization NRO BaseNRO 2019 2 hard*
Physics Henry Gas Solubility Optimization HGSO BaseHGSO 2019 3 medium
Physics Atom Search Optimization ASO BaseASO 2019 4 medium
Physics Equilibrium Optimizer EO BaseEO 2019 2 easy
Physics ModifiedEO 2020 2 medium
Physics AdaptiveEO 2020 2 medium
Physics Archimedes Optimization Algorithm ArchOA OriginalArchOA 2021 8 medium
0 0 0 0 0 0 0
Human Culture Algorithm CA OriginalCA 1994 3 easy
Human Imperialist Competitive Algorithm ICA BaseICA 2007 8 hard*
Human Teaching Learning-based Optimization TLO OriginalTLO 2011 2 easy
Human ITLO 2013 3 medium
Human Brain Storm Optimization BSO BaseBSO 2011 8 medium
Human Queuing Search Algorithm QSA OriginalQSA 2019 2 hard
Human ImprovedQSA 2021 2 hard
Human Search And Rescue Optimization SARO OriginalSARO 2019 4 medium
Human Life Choice-Based Optimization LCO OriginalLCO 2019 3 easy
Human Social Ski-Driver Optimization SSDO BaseSSDO 2019 2 easy
Human Gaining Sharing Knowledge-based Algorithm GSKA OriginalGSKA 2019 6 easy
Human Coronavirus Herd Immunity Optimization CHIO OriginalCHIO 2020 4 medium
Human Forensic-Based Investigation Optimization FBIO OriginalFBIO 2020 2 medium
Human Battle Royale Optimization BRO OriginalBRO 2020 3 medium
0 0 0 0 0 0 0
Bio Invasive Weed Optimization IWO OriginalIWO 2006 7 easy
Bio Biogeography-Based Optimization BBO OriginalBBO 2008 4 easy
Bio Virus Colony Search VCS OriginalVCS 2016 4 hard*
Bio Satin Bowerbird Optimizer SBO OriginalSBO 2017 5 easy
Bio Earthworm Optimisation Algorithm EOA BaseEOA 2018 8 medium
Bio Wildebeest Herd Optimization WHO BaseWHO 2019 12 medium
Bio Slime Mould Algorithm SMA OriginalSMA 2020 3 easy
0 0 0 0 0 0 0
System Germinal Center Optimization GCO OriginalGCO 2018 4 medium
System Water Cycle Algorithm WCA BaseWCA 2012 5 medium
System Artificial Ecosystem-based Optimization AEO OriginalAEO 2019 2 easy
System EnhancedAEO 2020 2 medium
System ModifiedAEO 2020 2 medium
System IAEO 2021 2 medium
0 0 0 0 0 0 0
Math Hill Climbing HC OriginalHC 1993 3 easy
Math Cross-Entropy Method CEM BaseCEM 1997 4 easy
Math Sine Cosine Algorithm SCA OriginalSCA 2016 2 easy
Math Gradient-Based Optimizer GBO OriginalGBO 2020 4 medium
Math Arithmetic Optimization Algorithm AOA OrginalAOA 2021 6 easy
Math Chaos Game Optimization CGO OriginalCGO 2021 2 easy
Math Pareto-like Sequential Sampling PSS OriginalPSS 2021 4 medium
0 0 0 0 0 0 0
Music Harmony Search HS OriginalHS 2001 4 easy

A

  • ABC - Artificial Bee Colony

    • BaseABC: Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
  • ACOR - Ant Colony Optimization.

    • BaseACOR: Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European journal of operational research, 185(3), 1155-1173.
  • ALO - Ant Lion Optimizer

    • OriginalALO: Mirjalili S (2015). “The Ant Lion Optimizer.” Advances in Engineering Software, 83, 80-98. doi: 10.1016/j.advengsoft.2015.01.010
    • BaseALO: My changed version
  • AEO - Artificial Ecosystem-based Optimization

    • OriginalAEO: Zhao, W., Wang, L., & Zhang, Z. (2019). Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Computing and Applications, 1-43.
    • AdaptiveAEO: My adaptive version
    • IAEO: Rizk-Allah, R. M., & El-Fergany, A. A. (2020). Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model. International Journal of Hydrogen Energy.
    • EnhancedAEO: Eid, A., Kamel, S., Korashy, A., & Khurshaid, T. (2020). An Enhanced Artificial Ecosystem-Based Optimization for Optimal Allocation of Multiple Distributed Generations. IEEE Access, 8, 178493-178513.
    • ModifiedAEO: Menesy, A. S., Sultan, H. M., Korashy, A., Banakhr, F. A., Ashmawy, M. G., & Kamel, S. (2020). Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access, 8, 31892-31909.
  • ASO - Atom Search Optimization

    • BaseASO: Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283-304.
  • ArchOA - Archimedes Optimization Algorithm

    • OriginalArchOA: Hashim, F. A., Hussain, K., Houssein, E. H., Mabrouk, M. S., & Al-Atabany, W. (2021). Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 51(3), 1531-1551.
  • AOA - Arithmetic Optimization Algorithm

    • OriginalAOA: Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609.
  • AO - Aquila Optimizer

    • OriginalAO: Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A., & Gandomi, A. H. (2021). Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Computers & Industrial Engineering, 157, 107250.

B

  • BFO - Bacterial Foraging Optimization

    • OriginalBFO: Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE control systems magazine, 22(3), 52-67.
    • ABFO: Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019, April). Building resource auto-scaler with functional-link neural network and adaptive bacterial foraging optimization. In International Conference on Theory and Applications of Models of Computation (pp. 501-517). Springer, Cham.
  • BeesA - Bees Algorithm

    • BaseBeesA: Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2005). The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK.
    • ProbBeesA: The probabilitic version of: Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454-459). Elsevier Science Ltd.
  • BBO - Biogeography-Based Optimization

    • OriginalBBO: Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.
    • BaseBBO: My changed version
  • BA - Bat Algorithm

    • OriginalBA: Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg.
    • BaseBA: The original version with parameters A and r changing after each iteration
    • ModifiedBA: My modified version
  • BSO - Brain Storm Optimization

    • BaseBSO: . Shi, Y. (2011, June). Brain storm optimization algorithm. In International conference in swarm intelligence (pp. 303-309). Springer, Berlin, Heidelberg.
    • ImprovedBSO: My improved version using levy-flight
  • BSA - Bird Swarm Algorithm

    • BaseBSA: Meng, X. B., Gao, X. Z., Lu, L., Liu, Y., & Zhang, H. (2016). A new bio-inspired optimisation algorithm:Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 28(4), 673-687.
  • BES - Bald Eagle Search

    • BaseBES: Alsattar, H. A., Zaidan, A. A., & Zaidan, B. B. (2019). Novel meta-heuristic bald eagle search optimisation algorithm. Artificial Intelligence Review, 1-28.
  • BRO - Battle Royale Optimization

    • OriginalBRO: Rahkar Farshi, T. (2020). Battle royale optimization algorithm. Neural Computing and Applications, 1-19.
    • BaseBRO: My changed version

C

  • CA - Culture Algorithm

    • OriginalCA: Reynolds, R.G., 1994, February. An introduction to cultural algorithms. In Proceedings of the third annual conference on evolutionary programming (Vol. 24, pp. 131-139). River Edge, NJ: World Scientific.
  • CEM - Cross Entropy Method

    • BaseCEM: Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability, 1(2), 127-190.
  • CSO - Cat Swarm Optimization

    • BaseCSO: Chu, S. C., Tsai, P. W., & Pan, J. S. (2006, August). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg.
  • CSA - Cuckoo Search Algorithm

    • BaseCSA: Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210-214). Ieee.
  • CRO - Coral Reefs Optimization

    • BaseCRO: Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., & Portilla-Figueras, J. A. (2014). The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014.
    • OCRO: Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient time-series forecasting using neural network and opposition-based coral reefs optimization. International Journal of Computational Intelligence Systems, 12(2), 1144-1161.
  • COA - Coyote Optimization Algorithm

    • BaseCOA: Pierezan, J., & Coelho, L. D. S. (2018, July). Coyote optimization algorithm: a new metaheuristic for global optimization problems. In 2018 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE.
  • CHIO - Coronavirus Herd Immunity Optimization

    • OriginalCHIO: Al-Betar, M. A., Alyasseri, Z. A. A., Awadallah, M. A., & Abu Doush, I. (2021). Coronavirus herd immunity optimizer (CHIO). Neural Computing and Applications, 33(10), 5011-5042.
    • BaseCHIO: My changed version
  • CGO - Chaos Game Optimization

    • OriginalCGO: Talatahari, S., & Azizi, M. (2021). Chaos Game Optimization: a novel metaheuristic algorithm. Artificial Intelligence Review, 54(2), 917-1004.

D

  • DE - Differential Evolution

    • BaseDE: Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
    • JADE: Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions on evolutionary computation, 13(5), 945-958.
    • SADE: Qin, A. K., & Suganthan, P. N. (2005, September). Self-adaptive differential evolution algorithm for numerical optimization. In 2005 IEEE congress on evolutionary computation (Vol. 2, pp. 1785-1791). IEEE.
    • SHADE: Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE.
    • L_SHADE: Tanabe, R., & Fukunaga, A. S. (2014, July). Improving the search performance of SHADE using linear population size reduction. In 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658-1665). IEEE.
    • SAP_DE: Teo, J. (2006). Exploring dynamic self-adaptive populations in differential evolution. Soft Computing, 10(8), 673-686.
  • DSA - Differential Search Algorithm (not done)

    • BaseDSA: Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers & Geosciences, 46, 229-247.
  • DO - Dragonfly Optimization

    • BaseDO: Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.

E

  • ES - Evolution Strategies .

    • BaseES: Schwefel, H. P. (1984). Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution. Annals of Operations Research, 1(2), 165-167.
    • LevyES: My changed version using Levy-flight
  • EP - Evolutionary programming .

    • BaseEP: Fogel, L. J. (1994). Evolutionary programming in perspective: The top-down view. Computational intelligence: Imitating life.
    • LevyEP: My changed version using Levy-flight
  • EHO - Elephant Herding Optimization .

    • BaseEHO: Wang, G. G., Deb, S., & Coelho, L. D. S. (2015, December). Elephant herding optimization. In 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (pp. 1-5). IEEE.
  • EFO - Electromagnetic Field Optimization .

    • OriginalEFO:Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8-22.
    • BaseEFO: My changed version
  • EOA - Earthworm Optimisation Algorithm .

    • BaseEOA:(My changed version) Wang, G. G., Deb, S., & dos Santos Coelho, L. (2018). Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. IJBIC, 12(1), 1-22.
  • EO - Equilibrium Optimizer .

    • BaseEO: Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2019). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems.
    • ModifiedEO: Gupta, S., Deep, K., & Mirjalili, S. (2020). An efficient equilibrium optimizer with mutation strategy for numerical optimization. Applied Soft Computing, 96, 106542.
    • AdaptiveEO: Wunnava, A., Naik, M. K., Panda, R., Jena, B., & Abraham, A. (2020). A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Engineering Applications of Artificial Intelligence, 94, 103836.

F

  • FFA - Firefly Algorithm

    • BaseFFA: Łukasik, S., & Żak, S. (2009, October). Firefly algorithm for continuous constrained optimization tasks. In International conference on computational collective intelligence (pp. 97-106). Springer, Berlin, Heidelberg.
  • FA - Fireworks algorithm

    • BaseFA: Tan, Y., & Zhu, Y. (2010, June). Fireworks algorithm for optimization. In International conference in swarm intelligence (pp. 355-364). Springer, Berlin, Heidelberg.
  • FPA - Flower Pollination Algorithm

    • BaseFPA: Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240-249). Springer, Berlin, Heidelberg.
  • FBIO - Forensic-Based Investigation Optimization

    • OriginalFBIO: Chou, J.S. and Nguyen, N.M., 2020. FBI inspired meta-optimization. Applied Soft Computing, p.106339.
    • BaseFBIO: My changed version
  • FOA - Fruit-fly Optimization Algorithm

    • OriginalFOA: Pan, W. T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74.
    • BaseFOA: My changed version
    • WhaleFOA: Fan, Y., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., & Li, C. (2020). Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications, 159, 113502.

G

  • GA - Genetic Algorithm

    • BaseGA: Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
  • GWO - Grey Wolf Optimizer

    • BaseGWO: Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
    • RW_GWO: Gupta, S., & Deep, K. (2019). A novel random walk grey wolf optimizer. Swarm and evolutionary computation, 44, 101-112.
  • GOA - Grasshopper Optimisation Algorithm

    • BaseGOA: Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 30-47.
  • GCO - Germinal Center Optimization

    • OriginalGCO: Villaseñor, C., Arana-Daniel, N., Alanis, A. Y., López-Franco, C., & Hernandez-Vargas, E. A. (2018). Germinal center optimization algorithm. International Journal of Computational Intelligence Systems, 12(1), 13-27.
    • BaseGCO: My changed version
  • GSKA - Gaining Sharing Knowledge-based Algorithm

    • OriginalGSKA: Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 1-29.
    • BaseGSKA: My changed version
  • GBO - Gradient-Based Optimizer

    • OriginalGBO: Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new metaheuristic optimization algorithm. Information Sciences, 540, 131-159.

H

  • HC - Hill Climbing .

    • OriginalHC: Talbi, E. G., & Muntean, T. (1993, January). Hill-climbing, simulated annealing and genetic algorithms: a comparative study and application to the mapping problem. In [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences (Vol. 2, pp. 565-573). IEEE.
    • BaseHC My changed version based on swarm-based idea (Original is single-solution based method)
  • HS - Harmony Search .

    • OriginalHS: Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm:harmony search. simulation, 76(2), 60-68.
    • BaseHS: My changed version
  • HHO - Harris Hawks Optimization .

    • BaseHHO: Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-872.
  • HGSO - Henry Gas Solubility Optimization .

    • BaseHGSO: Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, 646-667.
  • HGS - Hunger Games Search .

    • OriginalHGS: Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search:Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.
  • HHOA - Horse Herd Optimization Algorithm (not done) .

    • BaseHHOA: MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems, 213, 106711.

I

  • IWO - Invasive Weed Optimization .

    • OriginalIWO: Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics, 1(4), 355-366.
  • ICA - Imperialist Competitive Algorithm

    • BaseICA: Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.

J

  • JA - Jaya Algorithm
    • OriginalJA: Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
    • BaseJA: My changed version
    • LevyJA: Iacca, G., dos Santos Junior, V. C., & de Melo, V. V. (2021). An improved Jaya optimization algorithm with Levy flight. Expert Systems with Applications, 165, 113902.

K

L

  • LCO - Life Choice-based Optimization
    • OriginalLCO: Khatri, A., Gaba, A., Rana, K. P. S., & Kumar, V. (2019). A novel life choice-based optimizer. Soft Computing, 1-21.
    • BaseLCO: My changed version
    • ImprovedLCO: My improved version using Gaussian distribution and Mutation Mechanism

M

  • MA - Memetic Algorithm

    • BaseMA: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.
  • MFO - Moth Flame Optimization

    • OriginalMFO: Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249.
    • BaseMFO: My changed version
  • MVO - Multi-Verse Optimizer

    • OriginalMVO: Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495-513.
    • BaseMVO: My changed version
  • MSA - Moth Search Algorithm

    • BaseMSA: Wang, G. G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151-164.
  • MRFO - Manta Ray Foraging Optimization

    • BaseMRFO: Zhao, W., Zhang, Z., & Wang, L. (2020). Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence, 87, 103300.

N

  • NRO - Nuclear Reaction Optimization

    • BaseNRO: Wei, Z., Huang, C., Wang, X., Han, T., & Li, Y. (2019). Nuclear Reaction Optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access.
  • NMRA - Nake Mole-Rat Algorithm

    • BaseNMRA: Salgotra, R., & Singh, U. (2019). The naked mole-rat algorithm. Neural Computing and Applications, 31(12), 8837-8857.
    • ImprovedNMRA: My version using mutation probability, levy-flight and crossover operator

O

P

  • PSO - Particle Swarm Optimization

    • BasePSO: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Ieee.
    • PPSO: Ghasemi, M., Akbari, E., Rahimnejad, A., Razavi, S. E., Ghavidel, S., & Li, L. (2019). Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Computing, 23(19), 9701-9718.
    • HPSO_TVAC: Ghasemi, M., Aghaei, J., & Hadipour, M. (2017). New self-organising hierarchical PSO with jumping time-varying acceleration coefficients. Electronics Letters, 53(20), 1360-1362.
    • C_PSO: Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 25(5), 1261-1271.
    • CL_PSO: Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE transactions on evolutionary computation, 10(3), 281-295.
  • PFA - Pathfinder Algorithm

    • BasePFA: Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm. Applied Soft Computing, 78, 545-568.
  • PSS - Pareto-like Sequential Sampling

    • OriginalPSS: Shaqfa, M., & Beyer, K. (2021). Pareto-like sequential sampling heuristic for global optimisation. Soft Computing, 25(14), 9077-9096.

Q

  • QSA - Queuing Search Algorithm
    • OriginalQSA: Zhang, J., Xiao, M., Gao, L., & Pan, Q. (2018). Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling, 63, 464-490.
    • BaseQSA: My changed version
    • OppoQSA: My version using opposition-based learning
    • LevyQSA: My version using Levy-flight
    • ImprovedQSA: My version using Levy-flight and Opposition-based learning

R

S

  • SA - Simulated Annealling

    • BaseSA: . Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated annealing: Theory and applications (pp. 7-15). Springer, Dordrecht.
  • SSpiderO - Social Spider Optimization

    • BaseSSpiderO: Cuevas, E., Cienfuegos, M., ZaldíVar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384.
  • SSpiderA - Social Spider Algorithm

    • BaseSSpiderA: James, J. Q., & Li, V. O. (2015). A social spider algorithm for global optimization. Applied Soft Computing, 30, 614-627.
  • SCA - Sine Cosine Algorithm

    • OriginalSCA: Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133.
    • BaseSCA: My changed version
  • SRSR - Swarm Robotics Search And Rescue

    • BaseSRSR: Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach. Applied Soft Computing, 57, 708-726.
  • SBO - Satin Bowerbird Optimizer

    • OriginalSBO: Moosavi, S. H. S., & Bardsiri, V. K. (2017). Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Engineering Applications of Artificial Intelligence, 60, 1-15.
    • BaseSBO: My changed version
  • SHO - Spotted Hyena Optimizer

    • BaseSHO: Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48-70.
  • SSO - Salp Swarm Optimization

    • BaseSSO: Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
  • SFO - Sailfish Optimizer

    • BaseSFO: Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, 20-34.
    • ImprovedSFO: My improved version
  • SARO - Search And Rescue Optimization

    • OriginalSARO: Shabani, A., Asgarian, B., Gharebaghi, S. A., Salido, M. A., & Giret, A. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering, 2019.
    • BaseSARO: My changed version using Levy-flight
  • SSDO - Social Ski-Driver Optimization

    • BaseSSDO: Tharwat, A., & Gabel, T. (2019). Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications, 1-14.
  • SLO - Sea Lion Optimization

    • BaseSLO: Masadeh, R., Mahafzah, B. A., & Sharieh, A. (2019). Sea Lion Optimization Algorithm. Sea, 10(5).
    • ISLO: My improved version
    • ModifiedSLO: My modifed version using Levy-flight
  • SMA - Slime Mould Algorithm

    • OriginalSMA: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
    • BaseSMA: My changed version
  • SSA - Sparrow Search Algorithm

    • OriginalSSA: Jiankai Xue & Bo Shen (2020) A novel swarm intelligence optimization approach: sparrow search algorithm, Systems Science & Control Engineering, 8:1, 22-34, DOI: 10.1080/21642583.2019.1708830
    • BaseSSA: My changed version

T

  • TLO - Teaching Learning Optimization

    • OriginalTLO: Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.
    • BaseTLO: Rao, R., & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations, 3(4), 535-560.
    • ITLO: Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710-720.
  • TWO - Tug of War Optimization

    • BaseTWO: Kaveh, A., & Zolghadr, A. (2016). A novel meta-heuristic algorithm: tug of war optimization. Iran University of Science & Technology, 6(4), 469-492.
    • OppoTWO: Nguyen, T., Hoang, B., Nguyen, G., & Nguyen, B. M. (2020). A new workload prediction model using extreme learning machine and enhanced tug of war optimization. Procedia Computer Science, 170, 362-369.
    • LevyTWO: My version using Levy-flight
    • ImprovedTWO: My version using both Levy-flight and opposition-based learning

U

V

  • VCS - Virus Colony Search
    • OriginalVCS: Li, M. D., Zhao, H., Weng, X. W., & Han, T. (2016). A novel nature-inspired algorithm for optimization: Virus colony search. Advances in Engineering Software, 92, 65-88.
    • BaseVCS: My changed version

W

  • WCA - Water Cycle Algorithm

    • BaseWCA: Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151-166.
  • WOA - Whale Optimization Algorithm

    • BaseWOA: Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
    • HI_WOA: Tang, C., Sun, W., Wu, W., & Xue, M. (2019, July). A hybrid improved whale optimization algorithm. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 362-367). IEEE.
  • WHO - Wildebeest Herd Optimization

    • BaseWHO: Amali, D., & Dinakaran, M. (2019). Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-14.
  • WDO - Wind Driven Optimization

    • BaseWDO: Bayraktar, Z., Komurcu, M., & Werner, D. H. (2010, July). Wind Driven Optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics. In 2010 IEEE antennas and propagation society international symposium (pp. 1-4). IEEE.

X

Y

Z

Dummy Algorithms

  • AAA - Artificial Algae Algorithm .

    • OriginalAAA: Uymaz, S. A., Tezel, G., & Yel, E. (2015). Artificial algae algorithm (AAA) for nonlinear global optimization. Applied Soft Computing, 31, 153-171.
    • BaseAAA: My trial version
  • BWO - Black Widow Optimization .

    • OriginalBWO: Hayyolalam, V., & Kazem, A. A. P. (2020). Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 87, 103249.
    • BaseBWO: My trial version
  • BOA - Butterfly Optimization Algorithm.

    • OriginalBOA: Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing, 23(3), 715-734.
    • BaseBOA: My trial version
    • AdaptiveBOA: Singh, B., & Anand, P. (2018). A novel adaptive butterfly optimization algorithm. International Journal of Computational Materials Science and Engineering, 7(04), 1850026.
  • BMO - Blue Monkey Optimization .

    • OriginalBMO: Blue Monkey Optimization: (2019) The Blue Monkey: A New Nature Inspired Metaheuristic Optimization Algorithm. DOI: http://dx.doi.org/10.21533/pen.v7i3.621
    • BaseBMO: My trial version
  • EPO - Emperor Penguin Optimizer .

    • OriginalEPO: Dhiman, G., & Kumar, V. (2018). Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-Based Systems, 159, 20-50.
    • BaseEPO: My trial version
  • PIO - Pigeon-Inspired Optimization .

    • None: Duan, H., & Qiao, P. (2014). Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. International journal of intelligent computing and cybernetics.
    • BasePIO: My trial version, since the Original version not working.
    • LevyPIO: My trial version using Levy-flight
  • RHO - Rhino Herd Optimization .

    • OriginalRHO: Wang, G. G., Gao, X. Z., Zenger, K., & Coelho, L. D. S. (2018, December). A novel metaheuristic algorithm inspired by rhino herd behavior. In Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016 (No. 142, pp. 1026-1033). Linköping University Electronic Press.
    • BaseRHO: My developed version
    • LevyRHO: My developed using Levy-flight
  • SOA - Sandpiper Optimization Algorithm .

    • OriginalSOA: Kaur, A., Jain, S., & Goel, S. (2020). Sandpiper optimization algorithm: a novel approach for solving real-life engineering problems. Applied Intelligence, 50(2), 582-619.
    • BaseSOA: My trial version
  • STOA - Sooty Tern Optimization Algorithm. Sooty Tern Optimization Algorithm: Dhiman, G., & Kaur, A. (2019). STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 82, 148-174.

  • RRO - Raven Roosting Optimizaiton.

    • OriginalRRO: Brabazon, A., Cui, W., & O’Neill, M. (2016). The raven roosting optimisation algorithm. Soft Computing, 20(2), 525-545.
    • IRRO: Torabi, S., & Safi-Esfahani, F. (2018). Improved raven roosting optimization algorithm (IRRO). Swarm and Evolutionary Computation, 40, 144-154.
    • BaseRRO: My developed version