MO444 (2nd Semester, 2015) - Pattern Recognition and Machine Learning
Disciplina ministrada pelo Professor Dr. Andersonde Rezende Rocha
Para acesso de material da disciplina: http://www.ic.unicamp.br/~rocha/teaching/2015s2/mo444/index.html
Modelo de artigo: report-model.zip
Todos os trabalhos devem ser preparados os artigos científicos para entrega.
- 2015s2-mo444-assignment-01
- 2015s2-mo444-assignment-02
- 2015s2-mo444-assignment-03
- 2015s2-mo444-assignment-04
- Trabalho Final
Os assuntos abordados são:
- Presentation of the discipline. Syllabus.
- Introduction Class -- Introduction to Machine Learning, problems, data, tools.
- Reading: IAAM, Chapter #1 e #2; PRML, Chapter #1
- Introduction to ML
- Supervised Learning vs Unsupervised Learning vs Semi-Supervised Learning
- Liner Regression
- Cost Function
- Gradient Descent
- Generalization of Gradient Descent
- Model Complexity
- Overfitting vs. Generalization
- Multi-variate Regression
- Normalization
- Polynomial Regression
- Normal Equations vs. Gradient Descent
- Logistic Regression
- Decision Boundaries
- Logistic Regression and Cost Function
- Logistic Regression and Multi-class extensions
- Regularization
- Regularized Linear Regression and Logistic Regression
- Perceptron
- Effects of Dimensionality
- Neural Networks
- Cost Function
- Backpropagation
- Gradient Checking
- Unsupervised Learning
- Clustering
- K-Means
- Hard vs. Soft Assignment
- Gaussian Mixture Models (GMMs)
- Expectation/Maximization (EM)
- Dimensionality Reduction
- PCA and LDA
- Multi-class LDA
- Evolutionary Computing
- Genetic Algorithms
- Genetic Programming
- Evolutionary Programming
- Evolutionary Strategies
- Operators
- Problem Examples
- Data Representation vs. Data Classification
- Debugging an ML solution
- Performance Evaluation
- Bias vs. Variance
- ROC curves
- Bootstrapping
- Statistical Tests
- Wilcoxon Sign-Rank Test
- Friedman Test
- Post-tests
- Decision tree learning
- Sampling Theory
- Bagging
- Boosting
- Support Vector Machines (I)
- Support Vector Machines (II)
- Support Vector Machines (III)
- Random Forests (I)
- Random Forests (II)
- Naive Bayes
- Deep Learning
- Optimum-Path Forest Classifier (OPF)