/awesome-mining-band-ratio

A curated list of band ratios and mineral spectra signature aiming mineral exploration.

MIT LicenseMIT

Awesome Mining Band Ratio

Awesome Commits License

A curated list of materials, mineral spectral signature and published band ratios aiming the application of Remote Sensing to Mineral Exploration.

alt text

Please contribute. Let's make this guide better!

Table of Contents


Aster Band Ratios

IMPORTANT: the SWIR sensor (bands 4 to 9) are inoperable since 1st April 2008, and therefore only data acquired before this date will be suitable for mineral mapping

Feature Aster Band Ratio Ratio Description References
Iron Minerals B2/B1 Ferric Fe3 Rowan and Mars, 2003; Hewson et al., 2001, 2004a
Iron Minerals (B5/B3)+(B1/B2) Ferrous Fe2 Rowan and Mars, 2003
Iron Minerals B4/B2 Gossan Volesky et al., 2003
Iron Minerals B5/B4 Ferrous Silicates (biotite, chl, amphibolite) Cu-Au Alteration Hewson et al., 2001, 2004a
Iron Minerals B4/B3 Ferric Oxides Hewson et al., 2001, 2004a
Carbonates/Mafic Minerals (B7+B9)/B8 Carbonate/Chlorite/Epidote Rowan and Mars, 2003
Carbonates/Mafic Minerals B13/B14 Carbonate Index (Exoskarn (cal/dolom) 92% cfd) Bierwirth 2002, Nimoyima
Carbonates/Mafic Minerals (B6+B9)/(B7+B8) Epidote/Chlorite/Amphibole (Endoskarn) Hewson et al., 2001, 2004a
Carbonates/Mafic Minerals (B6+B9)/B8 Amphibole/MgOH (Can be other MgOH or carbonate*) Hewson et al., 2001, 2004a
Carbonates/Mafic Minerals B6/B8 Amphibole Bierwirth, 2002
Carbonates/Mafic Minerals (B6+B8)/B7 Dolomite Rowan and Mars, 2003
Carbonates/Mafic Minerals (B7/B6)*(B4/B6) Hydroxyl Group (OHI) 92% cfd Ninomiya, 2002
Carbonates/Mafic Minerals (B4/B5)*(B8/B6) Kaolinite (KLI) 92% cfd Ninomiya, 2002
Carbonates/Mafic Minerals (B7/B5)*(B7/B8) Alunite (ALI) 92% cfd Ninomiya, 2002
Carbonates/Mafic Minerals (B6/B8)*(B9/B8) Calcite (CLI) Ninomiya, 2002
Silicates (B5+B7)/B6 Sericite / Muscovite / Illite / Smectite (Phyllic alteration) Rowan and Mars, 2003; Hewson et al., 2001, 2004a
Silicates (B4+B6)/B5 Alunite / Kaolinite (Pyrophyllite) 92% cfd Rowan and Mars, 2003
Silicates B7/B6 Muscovite 92% cfd Hewson et al., 2001, 2004a
Silicates B7/B5 Kaolinite 92% cfd Hewson et al., 2001, 2004a
Silicates (B5B7)/(B6B6) Clay 92% cfd Bierwith, 2002
Silica Sio2 B14/B12 Quartz Rich Rocks Qz Index Rowan and Mars, 2003
Silica Sio2 (B11/B10)*(B11/B12) Quartz 92% cfd Ninomya, 2003a
Silica Sio2 B12/B13 Silica (Basic Degree Index (gnt)) Ninomiya, 2002; Bierwirth, 2002; Hewson et al., 2001, 2004a
Silica Sio2 B13/B10 Silica Hewson et al., 2001, 2004a
Silica Sio2 (B11xB11)(B10B12) Silica Index 92% cfd Ninoyima, 2002
Top

Landsat and Sentinel

Landsat and Sentinel don't have the same range as Aster. The ratios and RBG compositions below can be done with data from them and other plataforms. In order to make it comparable, let's use Awesome Spectral Indeces table of generic variables for spectral indices expressions and satellite equivalents.

Bands Comparison Among Plataforms

Description Standard Spectral Range (nm) Sentinel-2 Landsat-89 Landsat-457
Aerosols A 400 - 455 B1 B1
Blue B 450 - 530 B2 B2 B1
Green G 510 - 600 B3 B3 B2
Red R 620 - 690 B4 B4 B3
Red Edge 1 RE1 695 - 715 B5
Red Edge 2 RE2 730 - 750 B6
Red Edge 3 RE3 765 - 795 B7
NIR N 760 - 900 B8 B5 B4
NIR 2 N2 850 - 880 B8A
Water Vapour WV 930 - 960 B9
SWIR 1 S1 1550 - 1750 B11 B6 B5
SWIR 2 S2 2080 - 2350 B12 B7 B7
Thermal T 10400 - 12500 B6
Thermal 1 T1 10600 - 11190 B10
Thermal 2 T2 11500 - 12510 B11

RGB Composition and Band Ratio for Landsat 8-9 and Sentinel-2

Aster Bands 5 to 7 fall within band 12 of Sentinel-2.

Description Ratio / Channel R Channel G Channel B Comment
Natural Colour R G B
Colour Infrared (vegetation) N R G
False Colour (Urban) S2 S1 R
Agriculture S1 N B
Vegetation Index (N – R)/(N + R)
Moisture Index (N2 – S1)/(N2 + S1)
Geology S2 R B
Bathymetric R G A
Atmospheric Penetration S2 S1 N2
SWIR S2 N2 R
NDWI (G – N)/(G + N)
SWIR-2 B S1 S2
Ferric Iron "Redness" R/B
Ferric Iron 2 (R/B)*((R+S1)/N)
Ferrous Iron (G+S1)/(R+N) coarse grained ferric iron
Clay, sulphate, mica, marble (S1/S2)/(N/R)
Iron sulphate (B/A)-(N/R)
Ross Smail/Getech S1/R R/B S2/S1
Gad and Kusky 1 S1/R S2/S1 S1/B
Gad and Kusky 2 S2/S1 S1/N R/B Serpentinites in dark brown-green
Zohair et al 2019 S1/S2 S1/N R/B Serpentinites in dark brown
Pour R/B R/S1 S1/S2 Serpentinites in yellow
Sultan 1986/Gomez 2005 S1/S2 S1/B S1/N * R/N
Abrams 1983 S1/S2 N/S1 R/B Ultramafic/Basic-Mafic/Felsic
Mineral map S2/N N/S2 S1/R

Minerals Spectra Signature

Top

Planetary Datasets

Top

Other Awesome List

Top

References

Loughlin, 1991. Principal Component Analysis for alteration mapping

Sabin, 1997. Remote Sensing for Mineral Exploration

Hewson & Huntington, 2001A. Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data

Hewson et al., 2001B. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia

Bierwirth et al., 2002. Hyperspectral Mapping of Mineral Assemblages Associated with Gold Mineralization in the Central Pilbara, Western Australia

Ninomiya, 2002. Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data

Volesky et al., 2003. Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies

Rowan & Mars, 2004. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

van der Meer et al., 2012. Multi- and hyperspectral geologic remote sensing: A review

Jara, 2017. Multi-Scale integrated application of Spectral Geology and Remote Sensing for Mineral Exploration

Frutuoso et al., 2020. Application of remote sensing data in gold exploration: targeting hydrothermal alteration using Landsat 8 imagery in northern Portugal

Peyghambari & Zhang, 2021. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review

Top