Preliminary Investigation of Unsupervised Segmentation for Animal Locomotion Data using Deep Learning

Author

--

Abstract

The recent development of sensing technology and computer vision enables to track and measure the behavior of animals. This study investigates the unsupervised segmentation of animal locomotion data using deep learning based on image-based unsupervised segmentation methods.

Overview

How to run

Train and Prediction Vanilla model

python src/unsupervised_segmentation.py  --myloss --secmax --time --net segnet --alpha 0.1 --lambda_p 0.01 --tau 10000 -e 2 --epoch_all 1 --start 1 --end 2 --animal bird --savegif -d test

Train and prediction ablation models

python src/run.py --start 1 --end 2 --animal bird -d test

Requirements

python==3.5

torch>=1.1.0

Directory

├── data
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── documents          <- A default Sphinx project; see sphinx-doc.org for details
│
├── log                <- Record Logger.
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks.
│
├── result             <- Segmentaion results.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── src                <- Source code for use in this project.
│   │  
│   ├── my_util        <- Module Source code for use in this project.
│   │   │
│   │   ├── features
│   │   │   ├── get_trja.py
│   │   │   ├── kmeans.py
│   │   │   └── sec_argmax.py
│   │   ├── models
│   │   │   ├── my_lossfn.py
│   │   │   └── segnet_model.py
│   │   ├── parameters
│   │   │   ├── config.py
│   │   │   ├── my_args.py
│   │   │   └── set_hypara.py
│   │   ├── visualization
│   │   │   ├── analyze_segmenation.py
│   │   │   └── plt_label.py
│   │   ├── __init_.py
│   │   ├── get_logger.py
│   │   └── utils.py
│   │
│   ├── run.py                       <- Train and Prediction ablation models.
│   │
│   └── unsupervised_segmentation.py <- Train and Prediction proposed models.
│
├── .gitignore
│
├── LICENSE
│
└── README.md          <- The top-level README for developers using this project.