Aerial Image Segmentation
Prerequisites
Setup
Create a new virtual environment to install the required libraries:
$ pyenv virtualenv 3.6.5 aerial-segmentation-challenge
$ pyenv activate aerial-segmentation-challenge
Install the requirements with pip
:
$ pip install --upgrade pip
$ pip install -r requirements.txt
Train
$ python train.py
Output
Epoch 1/10: 100%|██████████████████████| 223/223 [01:53<00:00, 1.96it/s, loss=0.653383]
Epoch 2/10: 100%|██████████████████████| 223/223 [01:47<00:00, 2.07it/s, loss=0.461838]
Epoch 3/10: 100%|██████████████████████| 223/223 [01:53<00:00, 1.97it/s, loss=0.445231]
Epoch 4/10: 100%|██████████████████████| 223/223 [01:40<00:00, 2.22it/s, loss=0.432687]
Epoch 5/10: 100%|██████████████████████| 223/223 [01:39<00:00, 2.25it/s, loss=0.417365]
Epoch 6/10: 100%|██████████████████████| 223/223 [01:45<00:00, 2.11it/s, loss=0.410496]
Epoch 7/10: 100%|██████████████████████| 223/223 [01:40<00:00, 2.22it/s, loss=0.412155]
Epoch 8/10: 100%|██████████████████████| 223/223 [01:37<00:00, 2.29it/s, loss=0.401274]
Epoch 9/10: 100%|██████████████████████| 223/223 [01:36<00:00, 2.32it/s, loss=0.391534]
Epoch 10/10: 100%|██████████████████████| 223/223 [01:34<00:00, 2.35it/s, loss=0.386598]
(i) Model saved at ./weights/model.pt
(i) Loss plot saved at ./images/output/loss_plot.png
Predict
$ python predict.py
Output
(i) Prediction image saved at ./images/output/prediction.png