The bioinfokit toolkit aimed to provide various easy-to-use functionalities to analyze,
visualize, and interpret the biological data generated from genome-scale omics experiments.
How to install:
bioinfokit requires
- Python 3
- NumPy
- scikit-learn
- seaborn
- pandas
- matplotlib
- SciPy
- matplotlib_venn
bioinfokit can be installed using pip, easy_install and git.
Install using pip for Python 3 (easiest way)
# install
pip install bioinfokit
# upgrade to latest version
pip install bioinfokit --upgrade
# uninstall
pip uninstall bioinfokit
Install using easy_install for Python 3 (easiest way)
# install latest version
easy_install bioinfokit
# specific version
easy_install bioinfokit==0.3
# uninstall
pip uninstall bioinfokit
Install using conda
conda install -c bioconda bioinfokit
Install using git
# download and install bioinfokit (Tested on Linux, Mac, Windows)
git clone https://github.com/reneshbedre/bioinfokit.git
cd bioinfokit
python setup.py install
Check the version of bioinfokit
>>> import bioinfokit
>>> bioinfokit.__version__
'0.4'
Volcano plot
latest update v0.8.8
bioinfokit.visuz.gene_exp.volcano(df, lfc, pv, lfc_thr, pv_thr, color, valpha, geneid, genenames, gfont, dim, r, ar, dotsize, markerdot, sign_line, gstyle, show, figtype, axtickfontsize, axtickfontname, axlabelfontsize, axlabelfontname, axxlabel, axylabel, xlm, ylm, plotlegend, legendpos, figname, legendanchor, legendlabels)
Parameters | Description |
---|---|
df |
Pandas dataframe table having atleast gene IDs, log fold change, P-values or adjusted P-values columns |
lfc |
Name of a column having log or absolute fold change values [string][default:logFC] |
pv |
Name of a column having P-values or adjusted P-values [string][default:p_values] |
lfc_thr |
Log or absolute fold change cutoff for up and downregulated genes [float][default:1.0] |
pv_thr |
P-values or adjusted P-values cutoff for up and downregulated genes [float][default:0.05] |
color |
Tuple of three colors [tuple or list][default: color=("green", "grey", "red")] |
valpha |
Transparency of points on volcano plot [float (between 0 and 1)][default: 1.0] |
geneid |
Name of a column having gene Ids. This is necessary for plotting gene label on the points [string][default: None] |
genenames |
Tuple of gene Ids to label the points. The gene Ids must be present in the geneid column. If this option set to "deg" it will label all genes defined by lfc_thr and pv_thr [string, tuple, dict][default: None] |
gfont |
Font size for genenames [float][default: 10.0]. gfont not compatible with gstyle=2. |
dim |
Figure size [tuple of two floats (width, height) in inches][default: (5, 5)] |
r |
Figure resolution in dpi [int][default: 300]. Not compatible with show = True |
ar |
Rotation of X and Y-axis ticks labels [float][default: 90] |
dotsize |
The size of the dots in the plot [float][default: 8] |
markerdot |
Shape of the dot marker. See more options at https://matplotlib.org/3.1.1/api/markers_api.html [string][default: "o"] |
sign_line |
Show grid lines on plot with defined log fold change (lfc_thr ) and P-value (pv_thr ) threshold value [True or False][default:False] |
gstyle |
Style of the text for genenames. 1 for default text and 2 for box text [int][default: 1] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
axtickfontsize |
Font size for axis ticks [float][default: 9] |
axtickfontname |
Font name for axis ticks [string][default: 'Arial'] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axlabelfontname |
Font name for axis labels [string][default: 'Arial'] |
axxlabel |
Label for X-axis. If you provide this option, default label will be replaced [string][default: None] |
axylabel |
Label for Y-axis. If you provide this option, default label will be replaced [string][default: None] |
xlm |
Range of ticks to plot on X-axis [float (left, right, interval)][default: None] |
ylm |
Range of ticks to plot on Y-axis [float (bottom, top, interval)][default: None] |
plotlegend |
plot legend on volcano plot [True or False][default:False] |
legendpos |
position of the legend on plot. For more options see loc parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [string ][default:"best"] |
figname |
name of figure [string ][default:"ma"] |
legendanchor |
position of the legend outside of the plot. For more options see bbox_to_anchor parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [list][default:None] |
legendlabels |
legend label names. If you provide custom label names keep the same order of label names as default [list][default:['significant up', 'not significant', 'significant down']] |
Returns:
Volcano plot image in same directory (volcano.png) Working example
MA plot
latest update v0.8.8
bioinfokit.visuz.gene_exp.ma(table, lfc, ct_count, st_count, lfc_thr, color, dim, dotsize, show, r, valpha, figtype, axxlabel, axylabel, axlabelfontsize, axtickfontsize, axtickfontname, xlm, ylm, fclines, fclinescolor, legendpos, legendanchor, figname, legendlabels, plotlegend, ar)
Parameters | Description |
---|---|
table |
Pandas dataframe table having atleast gene IDs, log fold change, and normalized counts (control and treatment) columns |
lfc |
Name of a column having log fold change values [default:logFC] |
ct_count |
Name of a column having count values for control sample [default:value1] |
st_count |
Name of a column having count values for treatment sample [default:value2] |
lfc_thr |
Log fold change cutoff for up and downregulated genes [default:1] |
color |
Tuple of three colors [tuple or list][default: ("green", "grey", "red")] |
dotsize |
The size of the dots in the plot [float][default: 8] |
markerdot |
Shape of the dot marker. See more options at https://matplotlib.org/3.1.1/api/markers_api.html [string][default: "o"] |
valpha |
Transparency of points on plot [float (between 0 and 1)][default: 1.0] |
dim |
Figure size [tuple of two floats (width, height) in inches][default: (5, 5)] |
r |
Figure resolution in dpi [int][default: 300]. Not compatible with show = True |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
axxlabel |
Label for X-axis. If you provide this option, default label will be replaced [string][default: None] |
axylabel |
Label for Y-axis. If you provide this option, default label will be replaced [string][default: None] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axtickfontsize |
Font size for axis ticks [float][default: 9] |
axtickfontname |
Font name for axis ticks [string][default: 'Arial'] |
xlm |
Range of ticks to plot on X-axis [float (left, right, interval)][default: None] |
ylm |
Range of ticks to plot on Y-axis [float (bottom, top, interval)][default: None] |
fclines |
draw log fold change threshold lines as defines by lfc [True or False][default:False] |
fclinescolor |
color of fclines [string][default: '#2660a4'] |
plotlegend |
plot legend on MA plot [True or False][default:False] |
legendpos |
position of the legend on plot. For more options see loc parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [string ][default:"best"] |
legendanchor |
position of the legend outside of the plot. For more options see bbox_to_anchor parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [list][default:None] |
figname |
name of figure [string ][default:"ma"] |
legendlabels |
legend label names. If you provide custom label names keep the same order of label names as default [list][default:['significant up', 'not significant', 'significant down']] |
ar |
Rotation of X and Y-axis ticks labels [float][default: 90] |
Returns:
MA plot image in same directory (ma.png) Working example
Inverted Volcano plot
latest update v0.8.8
bioinfokit.visuz.gene_exp.involcano(table, lfc, pv, lfc_thr, pv_thr, color, valpha, geneid, genenames, gfont, gstyle, dotsize, markerdot, r, dim, show, figtype, axxlabel, axylabel, axlabelfontsize, axtickfontsize, axtickfontname, plotlegend, legendpos, legendanchor, figname, legendlabels, ar)
Parameters | Description |
---|---|
table |
Pandas dataframe table having atleast gene IDs, log fold change, P-values or adjusted P-values |
lfc |
Name of a column having log fold change values [default:logFC] |
pv |
Name of a column having P-values or adjusted P-values [default:p_values] |
lfc_thr |
Log fold change cutoff for up and downregulated genes [default:1] |
pv_thr |
P-values or adjusted P-values cutoff for up and downregulated genes [default:0.05] |
color |
Tuple of three colors [tuple or list][default: color=("green", "grey", "red")] |
valpha |
Transparency of points on volcano plot [float (between 0 and 1)][default: 1.0] |
geneid |
Name of a column having gene Ids. This is necessary for plotting gene label on the points [string][default: None] |
genenames |
Tuple of gene Ids to label the points. The gene Ids must be present in the geneid column. If this option set to "deg" it will label all genes defined by lfc_thr and pv_thr [string, tuple, dict][default: None] |
gfont |
Font size for genenames [float][default: 10.0] |
gstyle |
Style of the text for genenames. 1 for default text and 2 for box text [int][default: 1] |
dotsize |
The size of the dots in the plot [float][default: 8] |
markerdot |
Shape of the dot marker. See more options at https://matplotlib.org/3.1.1/api/markers_api.html [string][default: "o"] |
dim |
Figure size [tuple of two floats (width, height) in inches][default: (5, 5)] |
r |
Figure resolution in dpi [int][default: 300]. Not compatible with show = True |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
axxlabel |
Label for X-axis. If you provide this option, default label will be replaced [string][default: None] |
axylabel |
Label for Y-axis. If you provide this option, default label will be replaced [string][default: None] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axtickfontsize |
Font size for axis ticks [float][default: 9] |
axtickfontname |
Font name for axis ticks [string][default: 'Arial'] |
plotlegend |
plot legend on inverted volcano plot [True or False][default:False] |
legendpos |
position of the legend on plot. For more options see loc parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [string ][default:"best"] |
legendanchor |
position of the legend outside of the plot. For more options see bbox_to_anchor parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [list][default:None] |
figname |
name of figure [string ][default:"involcano"] |
legendlabels |
legend label names. If you provide custom label names keep the same order of label names as default [list][default:['significant up', 'not significant', 'significant down']] |
ar |
Rotation of X and Y-axis ticks labels [float][default: 90] |
Returns:
Inverted volcano plot image in same directory (involcano.png)
Correlation matrix plot
bioinfokit.visuz.stat.corr_mat(table, corm, cmap, r, dim, show, figtype, axtickfontsize, axtickfontname)
Parameters | Description |
---|---|
table |
Dataframe object with numerical variables (columns) to find correlation. Ideally, you should have three or more variables. Dataframe should not have identifier column. |
corm |
Correlation method [pearson,kendall,spearman] [default:pearson] |
cmap |
Color Palette for heatmap [string][default: 'seismic']. More colormaps are available at |
https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html
r
| Figure resolution in dpi [int][default: 300]. Not compatible with show
= True
dim
| Figure size [tuple of two floats (width, height) in inches][default: (6, 5)]
show
| Show the figure on console instead of saving in current folder [True or False][default:False]
figtype
| Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png']
axtickfontsize
| Font size for axis ticks [float][default: 7]
axtickfontname
| Font name for axis ticks [string][default: 'Arial']
Returns:
Correlation matrix plot image in same directory (corr_mat.png)
Concatenate VCF files
Concatenate multiple VCF files into single VCF file (for example, VCF files for each chromosome)
bioinfokit.analys.marker.concatvcf(file)
Parameters | Description |
---|---|
file |
Multiple vcf files separated by comma |
Returns:
Concatenated VCF file (concat_vcf.vcf)
Split VCF file
bioinfokit.analys.marker.splitvcf(file)
Split single VCF file containing variants for all chromosomes into individual file containing variants for each chromosome
Parameters | Description |
---|---|
file |
VCF file to split |
id |
chromosome id column in VCF file [string][default='#CHROM'] |
Returns:
VCF files for each chromosome
Reverse complement of DNA sequence
bioinfokit.analys.rev_com(sequence)
Parameters | Description |
---|---|
seq |
DNA sequence to perform reverse complement |
file |
DNA sequence in a fasta file |
Returns:
Reverse complement of original DNA sequence
Sequencing coverage
bioinfokit.analys.seqcov(file, gs)
Parameters | Description |
---|---|
file |
FASTQ file |
gs |
Genome size in Mbp |
Returns:
Sequencing coverage of the given FASTQ file
Convert TAB to CSV file
bioinfokit.analys.tcsv(file)
Parameters | Description |
---|---|
file |
TAB delimited text file |
Returns:
CSV delimited file (out.csv)
Heatmap
latest update v0.8.4
bioinfokit.visuz.gene_exp.hmap(table, cmap='seismic', scale=True, dim=(6, 8), rowclus=True, colclus=True, zscore=None, xlabel=True, ylabel=True, tickfont=(12, 12), show, r, figtype, figname)
Parameters | Description |
---|---|
file |
CSV delimited data file. It should not have NA or missing values |
cmap |
Color Palette for heatmap [string][default: 'seismic'] |
scale |
Draw a color key with heatmap [boolean (True or False)][default: True] |
dim |
heatmap figure size [tuple of two floats (width, height) in inches][default: (6, 8)] |
rowclus |
Draw hierarchical clustering for rows [boolean (True or False)][default: True] |
colclus |
Draw hierarchical clustering for columns [boolean (True or False)][default: True] |
zscore |
Z-score standardization of row (0) or column (1). It works when clus is True. [None, 0, 1][default: None] |
xlabel |
Plot X-label [boolean (True or False)][default: True] |
ylabel |
Plot Y-label [boolean (True or False)][default: True] |
tickfont |
Fontsize for X and Y-axis tick labels [tuple of two floats][default: (14, 14)] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
r |
Figure resolution in dpi [int][default: 300]. Not compatible with show = True |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
figname |
name of figure [string ][default:"heatmap"] |
Returns:
heatmap plot (heatmap.png, heatmap_clus.png)
Venn Diagram
bioinfokit.visuz.venn(vennset, venncolor, vennalpha, vennlabel)
Parameters | Description |
---|---|
vennset |
Venn dataset for 3 and 2-way venn. Data should be in the format of (100,010,110,001,101,011,111) for 3-way venn and 2-way venn (10, 01, 11) [default: (1,1,1,1,1,1,1)] |
venncolor |
Color Palette for Venn [color code][default: ('#00909e', '#f67280', '#ff971d')] |
vennalpha |
Transparency of Venn [float (0 to 1)][default: 0.5] |
vennlabel |
Labels to Venn [string][default: ('A', 'B', 'C')] |
Returns:
Venn plot (venn3.png, venn2.png)
One sample and two sample (independent and paired) t-tests
bioinfokit.analys.stat.ttest(df, xfac, res, evar, alpha, test_type, mu)
Parameters | Description |
---|---|
df |
Pandas dataframe for appropriate t-test. One sample: It should have atleast dependent (res) variable Two sample independent: It should have independent (xfac) and dependent (res) variables Two sample paired: It should have two dependent (res) variables |
xfac |
Independent group column name with two levels [string][default: None] |
res |
Dependent variable column name [string or list or tuple][default: None] |
evar |
t-test with equal variance [bool (True or False)][default: True] |
alpha |
Significance level for confidence interval (CI). If alpha=0.05, then 95% CI will be calculated [float][default: 0.05] |
test_type |
Type of t-test [int (1,2,3)][default: None]. 1: One sample t-test 2: Two sample independent t-test 3: Two sample paired t-test |
mu |
Population or known mean for the one sample t-test [float][default: None] |
Returns:
Summary output as class attribute (summary)
Description and Working example
Chi-square test
latest update v0.9.4
bioinfokit.analys.stat.chisq(df, p)
Parameters | Description |
---|---|
df |
Pandas dataframe. It should be one or two-dimensional contingency table. |
p |
Theoretical expected probabilities for each group. It must be non-negative and sum to 1. If p is provide Goodness of Fit test will be performed [list or tuple][default: None] |
Returns:
Summary and expected counts as class attributes (summary and expected_df)
File format conversions
bioinfokit.analys.format
Function | Parameters | Description |
---|---|---|
bioinfokit.analys.format.fqtofa(file) |
FASTQ file |
Convert FASTQ file into FASTA format |
bioinfokit.analys.format.hmmtocsv(file) |
HMM file |
Convert HMM text output (from HMMER tool) to CSV format |
bioinfokit.analys.format.tabtocsv(file) |
TAB file |
Convert TAB file to CSV format |
bioinfokit.analys.format.csvtotab(file) |
CSV file |
Convert CSV file to TAB format |
Returns:
Output will be saved in same directory
One-way ANOVA
bioinfokit.stat.oanova(table, res, xfac, ph, phalpha)
Parameters | Description |
---|---|
table |
Pandas dataframe in stacked table format |
res |
Response variable (dependent variable) [string][default: None] |
xfac |
Treatments or groups or factors (independent variable) [string][default: None] |
ph |
perform pairwise comparisons with Tukey HSD test [bool (True or False)] [default: False] |
phalpha |
significance level Tukey HSD test [float (0 to 1)][default: 0.05] |
Returns:
ANOVA summary, multiple pairwise comparisons, and assumption tests statistics
Manhatten plot
bioinfokit.visuz.marker.mhat(df, chr, pv, color, dim, r, ar, gwas_sign_line, gwasp, dotsize, markeridcol, markernames, gfont, valpha, show, figtype, axxlabel, axylabel, axlabelfontsize, ylm, gstyle, figname)
Parameters | Description |
---|---|
df |
Pandas dataframe object with atleast SNP, chromosome, and P-values columns |
chr |
Name of a column having chromosome numbers [string][default:None] |
pv |
Name of a column having P-values. Must be numeric column [string][default:None] |
color |
List the name of the colors to be plotted. It can accept two alternate colors or the number colors equal to chromosome number. If nothing (None) provided, it will randomly assign the color to each chromosome [list][default:None] |
gwas_sign_line |
Plot statistical significant threshold line defined by option gwasp [bool (True or False)][default: False] |
gwasp |
Statistical significant threshold to identify significant SNPs [float][default: 5E-08] |
dotsize |
The size of the dots in the plot [float][default: 8] |
markeridcol |
Name of a column having SNPs. This is necessary for plotting SNP names on the plot [string][default: None] |
markernames |
The list of the SNPs to display on the plot. These SNP should be present in SNP column. Additionally, it also accepts the dict of SNPs and its associated gene name. If this option set to True, it will label all SNPs with P-value significant score defined by gwasp [string, list, tuple, dict][default: True] |
gfont |
Font size for SNP names to display on the plot [float][default: 8]. gfont not compatible with gstyle=2. |
valpha |
Transparency of points on plot [float (between 0 and 1)][default: 1.0] |
dim |
Figure size [tuple of two floats (width, height) in inches][default: (6, 4)] |
r |
Figure resolution in dpi [int][default: 300] |
ar |
Rotation of X-axis labels [float][default: 90] |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
axxlabel |
Label for X-axis. If you provide this option, default label will be replaced [string][default: None] |
axylabel |
Label for Y-axis. If you provide this option, default label will be replaced [string][default: None] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
ylm |
Range of ticks to plot on Y-axis [float tuple (bottom, top, interval)][default: None] |
gstyle |
Style of the text for markernames. 1 for default text and 2 for box text [int][default: 1] |
figname |
name of figure [string ][default:"manhatten"] |
Returns:
Manhatten plot image in same directory (manhatten.png)
Extract the sequences from the FASTA file
bioinfokit.analys.extract_seq(file, id)
Parameters | Description |
---|---|
file |
input FASTA file from which sequneces to be extracted |
id |
sequence ID file |
Returns: Extracted sequences in FASTA format file in same directory (out.fasta)
Bar-dot plot
latest update v0.8.5
bioinfokit.visuz.stat.bardot(df, colorbar, colordot, bw, dim, r, ar, hbsize, errorbar, dotsize, markerdot, valphabar, valphadot, show, figtype, axxlabel, axylabel, axlabelfontsize, axlabelfontname, ylm, axtickfontsize, axtickfontname, yerrlw, yerrcw)
Parameters | Description |
---|---|
df |
Pandas dataframe object |
colorbar |
Color of bar graph [string or list][default:"#bbcfff"] |
colordot |
Color of dots on bar [string or list][default:"#ee8972"] |
bw |
Width of bar [float][default: 0.4] |
dim |
Figure size [tuple of two floats (width, height) in inches][default: (6, 4)] |
r |
Figure resolution in dpi [int][default: 300] |
ar |
Rotation of X-axis labels [float][default: 0] |
hbsize |
Horizontal bar size for standard error bars [float][default: 4] |
errorbar |
Draw standard error bars [bool (True or False)][default: True] |
dotsize |
The size of the dots in the plot [float][default: 6] |
markerdot |
Shape of the dot marker. See more options at https://matplotlib.org/3.1.1/api/markers_api.html [string][default: "o"] |
valphabar |
Transparency of bars on plot [float (between 0 and 1)][default: 1] |
valphadot |
Transparency of dots on plot [float (between 0 and 1)][default: 1] |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
axxlabel |
Label for X-axis. If you provide this option, default label will be replaced [string][default: None] |
axylabel |
Label for Y-axis. If you provide this option, default label will be replaced [string][default: None] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axlabelfontname |
Font name for axis labels [string][default: 'Arial'] |
ylm |
Range of ticks to plot on Y-axis [float tuple (bottom, top, interval)][default: None] |
axtickfontsize |
Font size for axis ticks [float][default: 9] |
axtickfontname |
Font name for axis ticks [string][default: 'Arial'] |
yerrlw |
Error bar line width [float][default: None] |
yerrcw |
Error bar cap width [float][default: None] |
Returns:
Bar-dot plot image in same directory (bardot.png)
FASTQ quality format detection
bioinfokit.analys.format.fq_qual_var(file)
Parameters | Description |
---|---|
file |
FASTQ file to detect quality format [deafult: None] |
Returns:
Quality format encoding name for FASTQ file (Supports only Sanger, Illumina 1.8+ and Illumina 1.3/1.4)
Linear regression analysis
bioinfokit.visuz.stat.lin_reg(df, x, y)
Parameters | Description |
---|---|
df |
Pandas dataframe object |
x |
Name of column having independent X variables [list][default:None] |
y |
Name of column having dependent Y variables [list][default:None] |
Returns:
Regression analysis summary
Regression plot
bioinfokit.visuz.stat.regplot(df, x, y, yhat, dim, colordot, colorline, r, ar, dotsize, markerdot, linewidth, valphaline, valphadot, show, figtype, axxlabel, axylabel, axlabelfontsize, axlabelfontname, xlm, ylm, axtickfontsize, axtickfontname)
Parameters | Description |
---|---|
df |
Pandas dataframe object |
x |
Name of column having independent X variables [string][default:None] |
y |
Name of column having dependent Y variables [string][default:None] |
yhat |
Name of column having predicted response of Y variable (y_hat) from regression [string][default:None] |
dim |
Figure size [tuple of two floats (width, height) in inches][default: (6, 4)] |
r |
Figure resolution in dpi [int][default: 300] |
ar |
Rotation of X-axis labels [float][default: 0] |
dotsize |
The size of the dots in the plot [float][default: 6] |
markerdot |
Shape of the dot marker. See more options at https://matplotlib.org/3.1.1/api/markers_api.html [string][default: "o"] |
valphaline |
Transparency of regression line on plot [float (between 0 and 1)][default: 1] |
valphadot |
Transparency of dots on plot [float (between 0 and 1)][default: 1] |
linewidth |
Width of regression line [float][default: 1] |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
axxlabel |
Label for X-axis. If you provide this option, default label will be replaced [string][default: None] |
axylabel |
Label for Y-axis. If you provide this option, default label will be replaced [string][default: None] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axlabelfontname |
Font name for axis labels [string][default: 'Arial'] |
xlm |
Range of ticks to plot on X-axis [float tuple (bottom, top, interval)][default: None] |
ylm |
Range of ticks to plot on Y-axis [float tuple (bottom, top, interval)][default: None] |
axtickfontsize |
Font size for axis ticks [float][default: 9] |
axtickfontname |
Font name for axis ticks [string][default: 'Arial'] |
colordot |
Color of dots on plot [string ][default:"#4a4e4d"] |
Returns:
Regression plot image in same directory (reg_plot.png)
GFF3 to GTF file format conversion
bioinfokit.analys.gff.gff_to_gtf(file)
Parameters | Description |
---|---|
file |
GFF3 genome annotation file |
Returns:
GTF format genome annotation file (file.gtf will be saved in same directory)
Scree plot
bioinfokit.visuz.cluster.screeplot(obj, axlabelfontsize, axlabelfontname, axxlabel, axylabel, figtype, r, show)
Parameters | Description |
---|---|
obj |
list of component name and component variance |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axlabelfontname |
Font name for axis labels [string][default: 'Arial'] |
axxlabel |
Label for X-axis. If you provide this option, default label will be replaced [string][default: None] |
axylabel |
Label for Y-axis. If you provide this option, default label will be replaced [string][default: None] |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
r |
Figure resolution in dpi [int][default: 300] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
Returns:
Scree plot image (screeplot.png will be saved in same directory)
Principal component analysis (PCA) loadings plots
bioinfokit.visuz.cluster.pcaplot(x, y, z, labels, var1, var2, var3, axlabelfontsize, axlabelfontname, figtype, r, show)
Parameters | Description |
---|---|
x |
loadings (correlation coefficient) for principal component 1 (PC1) |
y |
loadings (correlation coefficient) for principal component 2 (PC2) |
z |
loadings (correlation coefficient) for principal component 3 (PC2) |
labels |
original variables labels from dataframe used for PCA |
var1 |
Proportion of PC1 variance [float (0 to 1)] |
var2 |
Proportion of PC2 variance [float (0 to 1)] |
var3 |
Proportion of PC3 variance [float (0 to 1)] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axlabelfontname |
Font name for axis labels [string][default: 'Arial'] |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
r |
Figure resolution in dpi [int][default: 300] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
plotlabels |
Plot labels as defined by labels parameter [True or False][default:True] |
Returns:
PCA loadings plot 2D and 3D image (pcaplot_2d.png and pcaplot_3d.png will be saved in same directory)
Principal component analysis (PCA) biplots
latest update v0.8.4
bioinfokit.visuz.cluster.biplot(cscore, loadings, labels, var1, var2, var3, axlabelfontsize, axlabelfontname, figtype, r, show, markerdot, dotsize, valphadot, colordot, arrowcolor, valphaarrow, arrowlinestyle, arrowlinewidth, centerlines, datapoints, legendpos, colorlist)
Parameters | Description |
---|---|
cscore |
principal component scores (obtained from PCA().fit_transfrom() function in sklearn.decomposition) |
loadings |
loadings (correlation coefficient) for principal components |
labels |
original variables labels from dataframe used for PCA |
var1 |
Proportion of PC1 variance [float (0 to 1)] |
var2 |
Proportion of PC2 variance [float (0 to 1)] |
var3 |
Proportion of PC3 variance [float (0 to 1)] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axlabelfontname |
Font name for axis labels [string][default: 'Arial'] |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
r |
Figure resolution in dpi [int][default: 300] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
markerdot |
Shape of the dot on plot. See more options at https://matplotlib.org/3.1.1/api/markers_api.html [string][default: "o"] |
dotsize |
The size of the dots in the plot [float][default: 6] |
valphadot |
Transparency of dots on plot [float (between 0 and 1)][default: 1] |
colordot |
Color of dots on plot [string or list ][default:"#4a4e4d"] |
arrowcolor |
Color of the arrow [string ][default:"#fe8a71"] |
valphaarrow |
Transparency of the arrow [float (between 0 and 1)][default: 1] |
arrowlinestyle |
line style of the arrow. check more styles at https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html [string][default: '-'] |
arrowlinewidth |
line width of the arrow [float][default: 1.0] |
centerlines |
draw center lines at x=0 and y=0 for 2D plot [bool (True or False)][default: True] |
datapoints |
plot data points on graph [bool (True or False)][default: True] |
legendpos |
position of the legend on plot. For more options see loc parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [string ][default:"best"] |
colorlist |
list of the categories to assign the color [list][default:None] |
Returns:
PCA biplot 2D and 3D image (biplot_2d.png and biplot_3d.png will be saved in same directory)
t-SNE plot
latest update v0.8.5
bioinfokit.visuz.cluster.tsneplot(score, colorlist, axlabelfontsize, axlabelfontname, figtype, r, show, markerdot, dotsize, valphadot, colordot, dim, figname, legendpos, legendanchor)
Parameters | Description |
---|---|
score |
t-SNE component embeddings (obtained from TSNE().fit_transfrom() function in sklearn.manifold) |
colorlist |
list of the categories to assign the color [list][default:None] |
axlabelfontsize |
Font size for axis labels [float][default: 9] |
axlabelfontname |
Font name for axis labels [string][default: 'Arial'] |
figtype |
Format of figure to save. Supported format are eps, pdf, pgf, png, ps, raw, rgba, svg, svgz [string][default:'png'] |
r |
Figure resolution in dpi [int][default: 300] |
show |
Show the figure on console instead of saving in current folder [True or False][default:False] |
markerdot |
Shape of the dot on plot. See more options at https://matplotlib.org/3.1.1/api/markers_api.html [string][default: "o"] |
dotsize |
The size of the dots in the plot [float][default: 6] |
valphadot |
Transparency of dots on plot [float (between 0 and 1)][default: 1] |
colordot |
Color of dots on plot [string or list ][default:"#4a4e4d"] |
legendpos |
position of the legend on plot. For more options see loc parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [string ][default:"best"] |
legendanchor |
position of the legend outside of the plot. For more options see bbox_to_anchor parameter at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html [list][default:None] |
dim |
Figure size [tuple of two floats (width, height) in inches][default: (6, 4)] |
figname |
name of figure [string ][default:"tsne_2d"] |
Returns:
t-SNE 2D image (tsne_2d.png will be saved in same directory)
RPM or CPM normalization
Normalize raw gene expression counts into Reads per million mapped reads (RPM) or Counts per million mapped reads (CPM)
bioinfokit.analys.norm.cpm(df)
Parameters | Description |
---|---|
df |
Pandas dataframe containing raw gene expression values. Genes with missing expression values (NA) will be dropped. |
Returns:
RPM or CPM normalized Pandas dataframe as class attributes (cpm_norm)
RPKM or FPKM normalization
Normalize raw gene expression counts into Reads per kilo base per million mapped reads (RPKM) or Fragments per kilo base per million mapped reads (FPKM)
bioinfokit.analys.norm.rpkm(df, gl)
Parameters | Description |
---|---|
df |
Pandas dataframe containing raw gene expression values. Genes with missing expression or gene length values (NA) will be dropped. |
gl |
Name of a column having gene length in bp [string][default: None] |
Returns:
RPKM or FPKM normalized Pandas dataframe as class attributes (rpkm_norm)
TPM normalization
Normalize raw gene expression counts into Transcript per million (TPM)
bioinfokit.analys.norm.tpm(df, gl)
Parameters | Description |
---|---|
df |
Pandas dataframe containing raw gene expression values. Genes with missing expression or gene length values (NA) will be dropped. |
gl |
Name of a column having gene length in bp [string][default: None] |
Returns:
TPM normalized Pandas dataframe as class attributes (tpm_norm)
VCF annotation (assign genetic features and function to the variants in VCF file)
bioinfokit.analys.marker.vcf_anot(file, id, gff_file, anot_attr)
Parameters | Description |
---|---|
file |
VCF file |
id |
chromosome id column in VCF file [string][default='#CHROM'] |
gff_file |
GFF3 genome annotation file |
anot_attr |
Gene function tag in attributes field of GFF3 file |
Returns:
Tab-delimited text file with annotation (annotated text file will be saved in same directory)
Bioinformatics file readers and processing (FASTA, FASTQ, and VCF)
Function | Parameters | Description |
---|---|---|
bioinfokit.analys.fasta.fasta_reader(file) |
FASTA file |
FASTA file reader |
bioinfokit.analys.fastq.fastq_reader(file) |
FASTQ file |
FASTQ file reader |
bioinfokit.analys.marker.vcfreader(file) |
VCF file |
VCF file reader |
Returns:
File generator object (can be iterated only once) that can be parsed for the record
Description and working example
How to cite bioinfokit?
- Renesh Bedre. (2020, July 29). reneshbedre/bioinfokit: Bioinformatics data analysis and visualization toolkit (Version v0.9). Zenodo. http://doi.org/10.5281/zenodo.3965241
- Additionally check Zenodo to cite specific version of bioinfokit
References:
- Travis E. Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006).
- John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90-95 (2007), DOI:10.1109/MCSE.2007.55 (publisher link)
- Fernando Pérez and Brian E. Granger. IPython: A System for Interactive Scientific Computing, Computing in Science & Engineering, 9, 21-29 (2007), DOI:10.1109/MCSE.2007.53 (publisher link)
- Michael Waskom, Olga Botvinnik, Joel Ostblom, Saulius Lukauskas, Paul Hobson, MaozGelbart, … Constantine Evans. (2020, January 24). mwaskom/seaborn: v0.10.0 (January 2020) (Version v0.10.0). Zenodo. http://doi.org/10.5281/zenodo.3629446
- Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay. Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825-2830 (2011)
- Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010)
bioinfokit cited by:
- Jennifer Gribble, Andrea J. Pruijssers, Maria L. Agostini, Jordan Anderson-Daniels, James D. Chappell, Xiaotao Lu, Laura J. Stevens, Andrew L. Routh, Mark R. Denison bioRxiv 2020.04.23.057786; doi: https://doi.org/10.1101/2020.04.23.057786
- Greaney AM, Adams TS, Raredon MS, Gubbins E, Schupp JC, Engler AJ, Ghaedi M, Yuan Y, Kaminski N, Niklason LE. Platform Effects on Regeneration by Pulmonary Basal Cells as Evaluated by Single-Cell RNA Sequencing. Cell Reports. 2020 Mar 24;30(12):4250-65.