Provides scaffolding for training models on the Waterbirds dataset for robustness techniques. Makes use of torchplate.
Directions:
- Specify your config parameters (e.g., data paths, batch size) in
configs.py
. - Create custom experiments in
experiments.py
to test out new methods or useexperiments.BaseExperiment
. - Train and test the method using
runner.py
and specify the relevant CLI args. Example:
python runner.py -e BaseExp -c BaseConfig -train -test -num_epochs 10 -grad_accum 1