/not-all-examples

Not all examples are created equal

Primary LanguageShell

Not All Examples Are Created Equal

Shell scripts are provided to replicate the results of the paper.

Preprocessing

We create files that delineate which examples are augmented. These files ensure consistency: every model sees the same examples augmented.

An example command is:

python3 -m preprocessing --clustering=kmeans --dataset=coco --aug=0.1 --num_aug=1 --k=5 --split=train --aug_category=0

The command denotes which dataset to augment (coco), which clustering to use to assign augmentation (k-means), the cluster to augment (0), and the percentage increments to assign augmentation (0.1 = 10%, so the command generates files with 10%, 20%, 30%, ..., 100% of examples augmented).

Pre-Training

We train separate models on each augmentation increment (10%, 20%, 30%, ..., 100%).

An example command is:

python3 -m main --epochs=10 --master_port=20002 --model_name=rotnet --dataset=coco --clustering=kmeans --aug=0.2 --num_aug=1 --k=5 --aug_transform=bw --aug_category=0 --ddp

The command denotes which model to train (rotation network), which dataset to train on (coco), what percentage of the augmented cluster (0) should be augmented (20%), and which augmentation to perform (grayscale).

Downstream Training

We use the pre-trained model for a downstream classification task on CIFAR-100.

An example command is:

python3 -m main --master_port=24002 --pretrained=./weights/rotnet/coco/02_1/5/c0/bw/5_weights-0.pt --model_name=rotnetdown --dataset=cifar100 --num_classes=100 --clustering=kmeans --aug=0.2 --num_aug=1 --k=5 --aug_transform=bw --aug_category=0 --ddp

The command denotes the location of the pretrained model and the properties of the pretrained model (20% augmented with the grayscale transform), which model to train (downstream rotation network), which dataset to train on (cifar100), the classification task (100-way classification).

Evaluating Models

We evaluate the model on an unaugmented test set. The pre-trained model is directly evaluated on the unaugmented COCO test set; the downstream model is directly evaluted on the unaugmented CIFAR100 test set.

An example command is:

python3 -m main --master_port=37002 --pretrained=./weights/rotnet/coco/02_1/5/c0/bw/5_weights-0.pt --model_name=rotnet --dataset=coco --clustering=kmeans --aug=0.0 --num_aug=0 --k=5 --aug_transform=bw --aug_category=0 --debug --ddp

The command denotes the location of the pretrained model, which model to test (rotation network), which dataset to test on (coco). The --debug flag denotes testing mode.